Skip to main content

Current Applications in Food Preservation Based on Marine Biopolymers

  • Chapter
  • First Online:

Abstract

Marine biopolymers, including polysaccharides such as alginate, carrageenan, chitin, chitosan and gelatin, are biocompatible, biodegradable and non-toxic to mammals and are widely used in a variety of industrial applications. In food, these biopolymers perform a number of functions including gelling and thickening aqueous solutions, as well as stabilizing foams, emulsions and dispersions, inhibiting ice and sugar crystal formation, preventing spoilage and control the release of additive materials. These food biopolymers play an important role in food structure, food functional properties, food processing and shelf life. They are generally hydrophilic due to the large number of hydroxyl groups, which confer high affinity for binding water molecules, so that they can be dispersed in water in the colloidal state. In this chapter, we provide recent collaborative studies of the application of some important biopolymers in food preservation. In addition, the chapter provides the latest technological applications and prospects of these products in food applications. It provides a better understanding of the food systems, improve food qualities, and make better use of food macromolecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah MR, Mohmaed MA, Mohamed HM, Emara MM (2017) Improving the sensory, physicochemical and microbiological quality of pastirma (a traditional dry cured meat product) using chitosan coating. LWT Food Sci Technol 86:247–253

    Article  CAS  Google Scholar 

  • Abdollahi M, Rezaei M, Farzi G (2012a) Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int J Food Sci Technol 47(4):847–853

    Article  CAS  Google Scholar 

  • Abdollahi M, Rezaei M, Farzi G (2012b) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350

    Article  CAS  Google Scholar 

  • Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47:168–177

    Article  CAS  Google Scholar 

  • Ahmad M, Benjakul S, Prodpran T, Agustini TW (2012) Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll 28(1):189–199

    Article  CAS  Google Scholar 

  • Ahvenainen R (2003) Active and intelligent packaging: An introduction. Novel Food Packag Tech:5–21

    Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43(6):837–842

    Article  CAS  Google Scholar 

  • Akelah A (2013) Polymers in food packaging and protection. In: Functionalized polymeric materials in agriculture and the food industry. Springer, pp 293–347

    Google Scholar 

  • Akhtar MJ, Jacquot M, Jasniewski J, Jacquot C, Imran M, Jamshidian M, Paris C, Desobry S (2012) Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydr Polym 89(4):1150–1158

    Article  PubMed  CAS  Google Scholar 

  • Albert A, Salvador A, Fiszman S (2012) A film of alginate plus salt as an edible susceptor in microwaveable food. Food Hydrocoll 27(2):421–426

    Article  CAS  Google Scholar 

  • Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36(1):1–7

    Article  CAS  Google Scholar 

  • Alemán A, Giménez B, Montero P, Gómez-Guillén M (2011) Antioxidant activity of several marine skin gelatins. LWT Food Sci Technol 44(2):407–413

    Article  CAS  Google Scholar 

  • Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237

    Article  CAS  Google Scholar 

  • Altiok D, Altiok E, Tihminlioglu F (2010) Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 21(7):2227–2236

    Article  PubMed  CAS  Google Scholar 

  • Álvarez K, Famá L, Gutiérrez TJ (2017) Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 1. Bentham Science Publishers, pp 358–400. https://doi.org/10.2174/9781681084534117010015. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4

    Google Scholar 

  • Alves VD, Costa N, Coelhoso IM (2010) Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydr Polym 79(2):269–276

    Article  CAS  Google Scholar 

  • Andevari GT, Rezaei M (2011) Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. Int J Food Sci Technol 46(11):2305–2311

    Article  CAS  Google Scholar 

  • Angelo AJS, Vercellotti JR (1989) Inhibition of warmed-over flavor and preserving of uncured meat containing materials. Google Patents

    Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    Article  CAS  Google Scholar 

  • Araki C (1956) Structure of the agarose constituent of agar-agar. Bull Chem Soc Jpn 29(4):543–544

    Article  CAS  Google Scholar 

  • Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273

    Article  CAS  Google Scholar 

  • Armisen R, Galatas F (2000) Extraction of agar. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC press, Cambridge

    Google Scholar 

  • Aşik E, Candoğan K (2014) Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J Food Qual 37(4):237–246

    Article  CAS  Google Scholar 

  • Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62

    Article  CAS  Google Scholar 

  • Avila-Sosa R, Palou E, Munguía MTJ, Nevárez-Moorillón GV, Cruz ARN, López-Malo A (2012) Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int J Food Microbiol 153(1):66–72

    Article  PubMed  CAS  Google Scholar 

  • Badawy MEI, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51(1):110–117

    Article  CAS  Google Scholar 

  • Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:460381

    Article  CAS  Google Scholar 

  • Badawy MEI, Rabea EI (2016) Chitosan and Its derivatives as active ingredients against plant pests and diseases. In: Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities. Academic Press, pp 179–219

    Google Scholar 

  • Badawy MEI, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers (part 2). Bentham Science, p 1

    Google Scholar 

  • Badawy MEI, Rabea EI, El-Nouby MA (2016a) Preparation, physicochemical characterizations, and the antioxidant activity of the biopolymer films based on modified chitosan with starch, gelatin, and plasticizers. J Polym Mater 33(1):17

    CAS  Google Scholar 

  • Badawy MEI, Rabea EI, Taktak NE, El Nouby MA (2016b) Production and properties of different molecular weights of chitosan from marine shrimp shells. J Chitin Chitosan Sci 4(1):46–54

    Article  Google Scholar 

  • Badawy MEI, Rabea EI, AM El-Nouby M, Ismail RIA, Taktak NEM (2017a) Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int J Fruit Sci 17(2):117–136

    Article  Google Scholar 

  • Badawy MEI, Taktak NEM, Awad OM, Elfiki SA, El-Ela NEA (2017b) Preparation and characterization of biopolymers chitosan/alginate/gelatin gel spheres crosslinked by glutaraldehyde. J Macromol Sci B 56(6):359–372

    Article  CAS  Google Scholar 

  • Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+ and Ba 2+ ions. React Funct Polym 59(2):129–140

    Article  CAS  Google Scholar 

  • Baldwin EA, Hagenmaier R, Bai J (2011) Edible coatings and films to improve food quality. CRC Press

    Google Scholar 

  • Balfour E (1871) On the ethnology of hyderabad in the dekhan. Madras

    Google Scholar 

  • Bao S, Xu S, Wang Z (2009) Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. J Sci Food Agric 89(15):2692–2700

    Article  CAS  Google Scholar 

  • Benavides S, Villalobos-Carvajal R, Reyes J (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110(2):232–239

    Article  CAS  Google Scholar 

  • Beverlya RL, Janes ME, Prinyawiwatkula W, No HK (2008) Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiol 25(3):534–537

    Article  CAS  Google Scholar 

  • Bhatia S (2016) Marine bolysaccharides based nano-materials and Its applications. In: Natural polymer drug delivery systems. Springer, pp 185–225

    Google Scholar 

  • Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110(1):18–25

    Article  CAS  Google Scholar 

  • Bonilla J, Atarés L, Vargas M, Chiralt A (2012) Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. J Food Eng 110(2):208–213

    Article  CAS  Google Scholar 

  • Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118(3):271–278

    Article  CAS  Google Scholar 

  • Bostan K, Mahan FI (2011) Microbiological quality and shelf-life of sausage treated with chitosan. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 37(2):117–126

    Google Scholar 

  • Bracone M, Merino D, González J, Alvarez VA, Gutiérrez TJ (2016) Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science Publishers, New York, pp 119–155. ISBN: 978-1-63485-831-1

    Google Scholar 

  • Braconnot H (1811) Sur la nature des champignons. Ann Chim Phys 79:265–304

    Google Scholar 

  • Brody AL (2009) Innovations in fresh prepared meal delivery systems. Food Technol

    Google Scholar 

  • Brody AL, Strupinsky E, Kline LR (2001) Active packaging for food applications. CRC press

    Google Scholar 

  • Buonocore G, Conte A, Corbo M, Sinigaglia M, Del Nobile M (2005) Mono-and multilayer active films containing lysozyme as antimicrobial agent. Innov Food Sci Emerg Technol 6(4):459–464

    Article  CAS  Google Scholar 

  • Cacciuttolo MA, Trinh L, Lumpkin JA, Rao G (1993) Hyperoxia induces DNA damage in mammalian cells. Free Radic Biol Med 14(3):267–276

    Article  PubMed  CAS  Google Scholar 

  • Camo J, Beltrán JA, Roncalés P (2008) Extension of the display life of lamb with an antioxidant active packaging. Meat Sci 80(4):1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Campaniello D, Bevilacqua A, Sinigaglia M, Corbo M (2008) Chitosan: Antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25(8):992–1000

    Article  PubMed  CAS  Google Scholar 

  • Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77(2):167–180

    Article  CAS  Google Scholar 

  • Caner C, Vergano P, Wiles J (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63(6):1049–1053

    Article  CAS  Google Scholar 

  • Casettari L, Gennari L, Angelino D, Ninfali P, Castagnino E (2012) ORAC of chitosan and its derivatives. Food Hydrocoll 28(2):243–247

    Article  CAS  Google Scholar 

  • Centella MH, Arévalo-Gallegos A, Parra-Saldivar R, Iqbal HM (2017) Marine-derived bioactive compounds for value-added applications in bio-and non-bio sectors. J Clean Prod 168:1559–1565

    Article  CAS  Google Scholar 

  • Cha DS, Choi JH, Chinnan MS, Park HJ (2002) Antimicrobial films based on Na-alginate and κ-carrageenan. LWT Food Sci Technol 35(8):715–719

    Article  CAS  Google Scholar 

  • Chang-Bravo L, López-Córdoba A, Martino M (2014) Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. React Funct Polym 85:11–19

    Article  CAS  Google Scholar 

  • Cheng S-Y, Wang B-J, Weng Y-M (2015) Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT Food Sci Technol 63(1):115–121

    Article  CAS  Google Scholar 

  • Choi J, Choi W, Cha D, Chinnan M, Park H, Lee D, Park J (2005) Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT Food Sci Technol 38(4):417–423

    Article  CAS  Google Scholar 

  • Clark DE, Green HC (1936) Alginic acid and process of making same. Google Patents

    Google Scholar 

  • Cole C (2000) Gelatin. In: Francis FJ (ed) Encyclopedia of food science and technology, vol 4. Wiley, New York, pp 1183–1188

    Google Scholar 

  • Cooksey K (2005) Effectiveness of antimicrobial food packaging materials. Food Addit Contam 22(10):980–987

    Article  PubMed  CAS  Google Scholar 

  • Córdoba LJP, Sobral PJ (2017) Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. J Food Eng 213:47–53

    Article  CAS  Google Scholar 

  • Cruz RS, Camilloto GP, dos Santos Pires AC (2012) Oxygen scavengers: an approach on food preservation. In: Eissa, A.A. (ed), Structure and function of food engineering. InTech

    Google Scholar 

  • Dainelli D, Gontard N, Spyropoulos D, Zondervan-van den Beuken E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112

    Article  CAS  Google Scholar 

  • de Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19(2):153–160

    Article  CAS  Google Scholar 

  • Del Nobile MA, Gammariello D, Conte A, Attanasio M (2009) A combination of chitosan, coating and modified atmosphere packaging for prolonging Fior di latte cheese shelf life. Carbohydr Polym 78(1):151–156

    Article  CAS  Google Scholar 

  • Derkach SR, Ilyin SO, Maklakova AA, Kulichikhin VG, Malkin AY (2015) The rheology of gelatin hydrogels modified by κ-carrageenan. LWT Food Sci Technol 63(1):612–619

    Article  CAS  Google Scholar 

  • Devlieghere F, Vermeiren L, Debevere J (2004a) New preservation technologies: possibilities and limitations. Int Dairy J 14(4):273–285

    Article  Google Scholar 

  • Devlieghere F, Vermeulen A, Debevere J (2004b) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714

    Article  CAS  Google Scholar 

  • Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1(6):246–253

    Article  CAS  Google Scholar 

  • Duan J, Jiang Y, Cherian G, Zhao Y (2010) Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chem 122(4):1035–1042

    Article  CAS  Google Scholar 

  • Dutta PK, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63(1):20–31

    CAS  Google Scholar 

  • Dutta P, Tripathi S, Mehrotra G, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    Article  CAS  Google Scholar 

  • Eça KS, Sartori T, Menegalli FC (2014) Films and edible coatings containing antioxidants—a review. Braz J Food Technol 17(2):98–112

    Article  CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33(4):1819–1841

    Article  CAS  Google Scholar 

  • Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocoll 68:192–198

    Article  CAS  Google Scholar 

  • Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    Article  CAS  Google Scholar 

  • Feng T, Du Y, Li J, Hu Y, Kennedy JF (2008) Enhancement of antioxidant activity of chitosan by irradiation. Carbohydr Polym 73(1):126–132

    Article  CAS  Google Scholar 

  • Fernandez-Saiz P, Lagaron J, Ocio M (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23(3):913–921

    Article  CAS  Google Scholar 

  • Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22

    Article  PubMed Central  CAS  Google Scholar 

  • Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82

    Article  CAS  Google Scholar 

  • Garcıa MA, de la Paz N, Castro C, Rodrıguez JL, Rapado M, Zuluaga R, Ganán P, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. J Radiat Res Appl Sci 8(2):190–200

    Article  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Gol NB, Patel PR, Rao TR (2013) Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol 85:185–195

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Montero P, Giménez B, Gómez-Guillén M (2007) Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chem 105(2):511–520

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Bravo L, Gómez-Guillén M, Alemán A, Montero P (2009a) Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem 112(1):18–25

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, López de Lacey A, Gómez-Guillén M, López-Caballero M, Montero P (2009b) Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. J Aquat Food Product Technol 18(1–2):46–52

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, De Lacey AL, López-Caballero M, Gómez-Guillén M, Montero P (2010) Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27(7):889–896

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Estaca J, Balaguer M, López-Carballo G, Gavara R, Hernández-Muñoz P (2017) Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll 70:313–320

    Article  CAS  Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58(1):206–211

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher, pp 183–232. https://doi.org/10.1002/9781119364849.ch8

  • Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2016) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403. https://doi.org/10.1016/j.ijbiomac.2015.10.020

  • Gutiérrez TJ, Herniou-Julien C, Álvarez K, Alvarez VA (2018) Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohydr Polym 184:135–143. https://doi.org/10.1016/j.carbpol.2017.12.039

    Google Scholar 

  • Hambleton A, Debeaufort F, Bonnotte A, Voilley A (2009) Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocoll 23(8):2116–2124

    Article  CAS  Google Scholar 

  • Hamedi H, Kargozari M, Shotorbani PM, Mogadam NB, Fahimdanesh M (2017) A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: the antioxidant and antimicrobial activity, and application in food model. Food Hydrocoll 72:35–46

    Article  CAS  Google Scholar 

  • Han JH (2003) Antimicrobial food packaging. Novel Food Packag Tech 8:50–70

    Article  Google Scholar 

  • Han JH (2005) Innovations in food packaging. Academic Press

    Google Scholar 

  • Hands S, Peat S (1938) Isolation of an anhydro-L-galactose derivative from agar. Nature 142:797

    Article  CAS  Google Scholar 

  • Ho C, Huffman D, Bradford D, Egbert W, Mikel W, Jones W (1995) Storage stability of vacuum packaged frozen pork sausage containing soy protein concentrate, carrageenan or antioxidants. J Food Sci 60(2):257–261

    Article  CAS  Google Scholar 

  • Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Monatshefte für Chemie Chem Month 140(12):1403–1420

    Article  CAS  Google Scholar 

  • Hong S-I, Rhim J-W (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824

    Article  PubMed  CAS  Google Scholar 

  • Hong YH, Lim GO, Song K (2009) Physical properties of gelidium corneum–gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J Food Sci 74(1):C6–C10

    Article  PubMed  CAS  Google Scholar 

  • Hoque MS, Benjakul S, Prodpran T (2010) Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. J Food Eng 96(1):66–73

    Article  CAS  Google Scholar 

  • Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RCF, Bekhit AE-dA (2016) Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol 46(11–12):1047–1116

    Article  CAS  Google Scholar 

  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763

    Article  PubMed  CAS  Google Scholar 

  • Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50(9):799–821

    Article  PubMed  CAS  Google Scholar 

  • Jayas DS, Jeyamkondan S (2002) PH—postharvest technology: Modified atmosphere storage of grains meats fruits and vegetables. Biosyst Eng 82(3):235–251

    Article  Google Scholar 

  • Jeon Y-J, Kamil JY, Shahidi F (2002) Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J Agric Food Chem 50(18):5167–5178

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. J Food Eng 116(3):695–702

    Article  CAS  Google Scholar 

  • Jongjareonrak A, Benjakul S, Visessanguan W, Tanaka M (2008) Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocoll 22(3):449–458

    Article  CAS  Google Scholar 

  • Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int J Biol Macromol 67:373–379

    Article  PubMed  CAS  Google Scholar 

  • Juck G, Neetoo H, Chen H (2010) Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. Int J Food Microbiol 142(3):302–308

    Article  PubMed  CAS  Google Scholar 

  • Kader AA, Zagory D, Kerbel EL, Wang CY (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28(1):1–30

    Article  PubMed  CAS  Google Scholar 

  • Kanatt SR, Rao M, Chawla S, Sharma A (2013) Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT Food Sci Technol 53(1):321–326

    Article  CAS  Google Scholar 

  • Kanmani P, Rhim J-W (2014a) Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. Int J Biol Macromol 68:258–266

    Article  PubMed  CAS  Google Scholar 

  • Kanmani P, Rhim J-W (2014b) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652

    Article  CAS  Google Scholar 

  • Kavoosi G, Dadfar SMM, Purfard AM (2013) Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J Food Sci 78(2):E244–E250

    Article  PubMed  CAS  Google Scholar 

  • Kavoosi G, Rahmatollahi A, Dadfar SMM, Purfard AM (2014) Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT Food Sci Technol 57(2):556–561

    Article  CAS  Google Scholar 

  • Kerry J, O’grady M, Hogan S (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74(1):113–130

    Article  PubMed  CAS  Google Scholar 

  • Khalil HA, Saurabh CK, Tye Y, Lai T, Easa A, Rosamah E, Fazita M, Syakir M, Adnan A, Fizree H (2017) Seaweed based sustainable films and composites for food and pharmaceutical applications: a review. Renew Sust Energ Rev 77:353–362

    Article  CAS  Google Scholar 

  • Khan I, Tango CN, Oh DH (2017) Development and evaluation of chitosan and its derivative for the shelf life extension of beef meat under refrigeration storage. Int J Food Sci Technol 52(5):1111–1121

    Article  CAS  Google Scholar 

  • Kim KW, Thomas R (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101(1):308–313

    Article  CAS  Google Scholar 

  • Kim HS, Lee C-G, Lee EY (2011) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng 16(5):843

    Article  CAS  Google Scholar 

  • Knutsen S, Myslabodski D, Larsen B, Usov A (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–170

    Article  CAS  Google Scholar 

  • Koli JM, Basu S, Nayak BB, Patange SB, Pagarkar AU, Gudipati V (2012) Functional characteristics of gelatin extracted from skin and bone of Tiger-toothed croaker (Otolithes ruber) and Pink perch (Nemipterus japonicus). Food Bioprod Process 90(3):555–562

    Article  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  PubMed  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2):126–139

    Article  CAS  Google Scholar 

  • Krefting A (1903) Process of extracting glutinous substances from seaweed. Google Patents

    Google Scholar 

  • Krkić N, Šojić B, Lazić V, Petrović L, Mandić A, Sedej I, Tomović V (2013) Lipid oxidative changes in chitosan-oregano coated traditional dry fermented sausage Petrovská klobása. Meat Sci 93(3):767–770

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, McGlade D, Lawler J (2014) Functionalized chitosan derived novel positively charged organic–inorganic hybrid ultrafiltration membranes for protein separation. RSC Adv 4(42):21699–21711

    Article  CAS  Google Scholar 

  • Lassaigne JL (1843) C. r. acad. sci., Paris 16, 387 (1843). Ann Chem 48

    Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S-R, Park H-M, Lim H, Kang T, Li X, Cho W-J, Ha C-S (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495–2500

    Article  CAS  Google Scholar 

  • Leon PG, Rojas AM (2007) Gellan gum films as carriers of L-(+)-ascorbic acid. Food Res Int 40(5):565–575

    Article  CAS  Google Scholar 

  • Li K, Hwang Y, Tsai T, Chi S (1996) Chelation of iron ion and antioxidative effect on cooked salted ground pork by N-carboxymethylchitosan (NCMC). Food Sci Taiwan 23:608–616

    CAS  Google Scholar 

  • Li J-H, Miao J, Wu J-L, Chen S-F, Zhang Q-Q (2014) Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll 37:166–173

    Article  CAS  Google Scholar 

  • Liu X, Zeng A, Song T, Li L, Yang F, Wang Q, Wu B, Liu Y, Zhi X (2012) Hypocholesterolemic effects of N-[(2-Hydroxy-3-N,N-Dimethylhexadecyl Ammonium) propyl] chitosan chloride in high-fat-diet-induced rats. J Biomater Sci Polym Ed 23(8):1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114(12):6423–6461

    Article  PubMed  CAS  Google Scholar 

  • Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19–29

    Article  CAS  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41(1):1–21

    Article  CAS  Google Scholar 

  • Maizura M, Fazilah A, Norziah M, Karim A (2007) Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. J Food Sci 72(6):C324–C330

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10(3):247–254

    Article  CAS  Google Scholar 

  • Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327

    Article  PubMed  CAS  Google Scholar 

  • Manzanarez-López F, Soto-Valdez H, Auras R, Peralta E (2011) Release of α-tocopherol from poly (lactic acid) films, and its effect on the oxidative stability of soybean oil. J Food Eng 104(4):508–517

    Article  CAS  Google Scholar 

  • Mariod AA, Fadul H (2013) Gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12(2):135–147

    CAS  Google Scholar 

  • Mariod AA, Fadul H (2015) Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making. Revista de Agaroquimica y Tecnologia de Alimentos 21(5):380–391

    CAS  Google Scholar 

  • Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27(1):220–227

    Article  CAS  Google Scholar 

  • Martucci JF, Ruseckaite RA (2017) Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocoll 64:70–77

    Article  CAS  Google Scholar 

  • Martucci J, Gende L, Neira L, Ruseckaite R (2015) Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind Crop Prod 71:205–213

    Article  CAS  Google Scholar 

  • McHugh D (2003) Chapter 7: Carrageenan. A guide to the seaweed industry: FAO fisheries technical paper 441

    Google Scholar 

  • Mi F-L, Shyu S-S, Wu Y-B, Lee S-T, Shyong J-Y, Huang R-N (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22(2):165–173

    Article  PubMed  CAS  Google Scholar 

  • Min B, Oh JH (2009) Antimicrobial activity of catfish gelatin coating containing origanum (Thymus capitatus) oil against Gram-negative pathogenic bacteria. J Food Sci 74(4):M143–M148

    Article  PubMed  CAS  Google Scholar 

  • Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan P, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252

    Article  PubMed  CAS  Google Scholar 

  • Mohebbi M, Ansarifar E, Hasanpour N, Amiryousefi MR (2012) Suitability of Aloe vera and gum tragacanth as edible coatings for extending the shelf life of button mushroom. Food Bioprocess Technol 5(8):3193–3202

    Article  CAS  Google Scholar 

  • Moncayo D, Buitrago G, Algecira N (2013) The surface properties of biopolymer-coated fruit: a review. Ingeniería e Investigación 33(3):11–16

    CAS  Google Scholar 

  • Moreira MR, Pereda M, Marcovich NE, Roura SI (2011) Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami. J Food Sci 76(1):M54–M63

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1973) Natural chelating polymers: alginic acid, chitin and chitosan. Pergamon Press, Oxford, New York

    Google Scholar 

  • Nafchi AM, Moradpour M, Saeidi M, Alias AK (2014) Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT Food Sci Technol 58(1):142–149

    Article  CAS  Google Scholar 

  • Nanaki S, Karavas E, Kalantzi L, Bikiaris D (2010) Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym 79(4):1157–1167

    Article  CAS  Google Scholar 

  • Neetoo H, Ye M, Chen H (2010) Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int J Food Microbiol 136(3):326–331

    Article  PubMed  CAS  Google Scholar 

  • Ngo D-H, Kim S-K (2014) Antioxidant effects of chitin, chitosan and their derivatives. Elsevier, Oxford, UK

    Book  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • No H, Meyers S, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87–R100

    Article  PubMed  CAS  Google Scholar 

  • Nollet LM (2016) Marine microorganisms: extraction and analysis of bioactive compounds. CRC Press, Boca Raton

    Book  Google Scholar 

  • Norajit K, Kim KM, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98(3):377–384

    Article  CAS  Google Scholar 

  • Nowzari F, Shábanpour B, Ojagh SM (2013) Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem 141(3):1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Nussinovitch A, Gershon Z (1997) Physical characteristics of agar—yeast sponges. Food Hydrocoll 11(2):231–237

    Article  CAS  Google Scholar 

  • Odier A (1823) Mémoire sur la composition chimique des parties cornées des insectes

    Google Scholar 

  • Ogaji IJ, Nep EI, Audu-Peter JD (2012) Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta 3:146.

    Article  CAS  Google Scholar 

  • Olaimat AN, Holley RA (2015) Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA. Food Microbiol 48:83–88

    Article  PubMed  CAS  Google Scholar 

  • Olatunji O (2016) Classification of natural polymers. In: Olatunji O (ed) Natural polymers. Springer, Basel, pp 1–17

    Chapter  Google Scholar 

  • Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006) Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot 69(10):2364–2369

    Article  PubMed  CAS  Google Scholar 

  • Park HJ (1999) Development of advanced edible coatings for fruits. Trends Food Sci Technol 10(8):254–260

    Article  CAS  Google Scholar 

  • Park P-J, Je J-Y, Kim S-K (2004a) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55(1):17–22

    Article  CAS  Google Scholar 

  • Park SI, Daeschel M, Zhao Y (2004b) Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69(8):M215–M221

    Article  CAS  Google Scholar 

  • Park SI, Stan SD, Daeschel MA, Zhao Y (2005) Antifungal coatings on fresh strawberries (Fragaria× ananassa) to control mold growth during cold storage. J Food Sci 70(4):M202–M207

    Article  CAS  Google Scholar 

  • Pasanphan W, Rattanawongwiboon T, Choofong S, Güven O, Katti KK (2015) Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiat Phys Chem 106:360–370

    Article  CAS  Google Scholar 

  • Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocoll 30(1):272–280

    Article  CAS  Google Scholar 

  • Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23

    Google Scholar 

  • Paula HCB, de Paula RCM, Bezerral SKF (2006) Swelling and release kinetics of larvicide-containing chitosan/cashew gum beads. J Appl Polym Sci 102(1):395–400.

    Article  CAS  Google Scholar 

  • Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol 59:282–289

    Article  PubMed  CAS  Google Scholar 

  • Percival E, Somerville J, Forbes I (1938) Isolation of an anhydro-sugar derivative from agar. Nature 142:797–798

    Article  CAS  Google Scholar 

  • Perdones A, Sánchez-González L, Chiralt A, Vargas M (2012) Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 70:32–41

    Article  CAS  Google Scholar 

  • Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25(5):1372–1381

    Article  CAS  Google Scholar 

  • Pereira L (2011) A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science, pp 15–47

    Google Scholar 

  • Pereira de Abreu D, Cruz J, Paseiro Losada P (2012) Active and intelligent packaging for the food industry. Food Rev Intl 28(2):146–187

    Article  CAS  Google Scholar 

  • Pereira L, Gheda SF, Ribeiro-Claro PJ (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem 2013:537202

    Article  CAS  Google Scholar 

  • Phillips GO, Williams PA (2009) Handbook of hydrocolloids. Elsevier

    Google Scholar 

  • Pokorny J (2007) Antioxidants in food preservation. In: Handbook of food preservation, vol 2, pp 259–286

    Chapter  Google Scholar 

  • Prabu K, Natarajan E (2012) In vitro antimicrobial and antioxidant activity of chitosan isolated from Podophthalmus vigil. J Appl Pharm Sci 2(9):75–82

    Google Scholar 

  • Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  PubMed  CAS  Google Scholar 

  • Pranoto Y, Salokhe VM, Rakshit SK (2005) Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Res Int 38(3):267–272

    Article  CAS  Google Scholar 

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380

    Article  PubMed  CAS  Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Ramos M, Jiménez A, Garrigós MC (2017) Active nanocomposites in food contact materials. In: Nanoscience in food and agriculture 4. Springer, pp 1–44

    Google Scholar 

  • Rao M, Kanatt S, Chawla S, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82(4):1243–1247

    Article  CAS  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121(3):313–327

    Article  PubMed  CAS  Google Scholar 

  • Raybaudi-Massilia R, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O (2016) Combinational edible antimicrobial films and coatings. In: Antimicrobial food packaging. Elsevier, pp 633–646

    Google Scholar 

  • Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98(3):404–419

    Article  PubMed  Google Scholar 

  • Reinhard S, Herbert G (2007) Gelatin handbook: theory and industrial practice. Wiley-VCH Press, Weinheim

    Google Scholar 

  • Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21(11):1425–1435

    Article  Google Scholar 

  • Rhim JW (2012) Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. J Food Sci 77(12):N66–N73

    Article  PubMed  CAS  Google Scholar 

  • Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  PubMed  CAS  Google Scholar 

  • Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    Article  PubMed  CAS  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652

    Article  CAS  Google Scholar 

  • Rinaudo M (1992) On the abnormal exponents a ν and a D in Mark Houwink type equations for wormlike chain polysaccharides. Polym Bull 27(5):585–589

    Article  CAS  Google Scholar 

  • Rodriguez-Aguilera R, Oliveira JC (2009) Review of design engineering methods and applications of active and modified atmosphere packaging systems. Food Eng Rev 1(1):66–83

    Article  CAS  Google Scholar 

  • Rouget C (1859) Des substances amylacees dans le tissue des animux, specialement les Articules (Chitine). Compt Rend 48:792–795

    Google Scholar 

  • Sabra W, Deckwer W-D (2005) Alginate—a polysaccharide of industrial interest and diverse biological functions. Polysacharides Struct Divers Funct Versat 2:515–533

    Google Scholar 

  • Samec M, Isajevič V (1922) Studien über Pflanzenkolloide, XIV. Fortschrittsberichte über Kolloide und Polymere 16(5):285–300

    CAS  Google Scholar 

  • Sathivel S, Liu Q, Huang J, Prinyawiwatkul W (2007) The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Eng 83(3):366–373

    Article  CAS  Google Scholar 

  • Scheuer PJ (2013) Marine natural products: chemical and biological perspectives. Academic Press, New York

    Google Scholar 

  • Schreiber SB, Bozell JJ, Hayes DG, Zivanovic S (2013) Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll 33(2):207–214

    Article  CAS  Google Scholar 

  • Seol K-H, Lim D-G, Jang A, Jo C, Lee M (2009) Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 C. Meat Sci 83(3):479–483

    Article  PubMed  CAS  Google Scholar 

  • Shahidi F (1996) Role of chemistry and biotechnology in value-added utilization of shellfish processing discards. ChemInform 27(15)

    Google Scholar 

  • Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    Article  CAS  Google Scholar 

  • Shankar S, Jaiswal L, Rhim J-W (2016) Gelatin-based nanocomposite films: potential use in antimicrobial active packaging. In: Antimicrobial food packaging. Elsevier, pp 339–348

    Google Scholar 

  • Shao X, Tu K, Tu S, Tu J (2012) A combination of heat treatment and chitosan coating delays ripening and reduces decay in “Gala” apple fruit. J Food Qual 35(2):83–92

    Article  CAS  Google Scholar 

  • Shen Z, Kamdem DP (2015) Development and characterization of biodegradable chitosan films containing two essential oils. Int J Biol Macromol 74:289–296

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Kamiya H (1983) Bioactive marine biopolymers. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol 5. Academic Press, p 391

    Google Scholar 

  • Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, Hosseini SM, Khaksar R (2013) Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124

    Article  PubMed  CAS  Google Scholar 

  • Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R (2014) Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym 101:582–591

    Article  PubMed  CAS  Google Scholar 

  • Silberbauer A, Schmid M (2017) Packaging concepts for ready-to-eat food: recent progress. J Packag Technol Res 1(3):113–126

    Article  Google Scholar 

  • Simic MG, Karel M (2013) Autoxidation in food and biological systems. Springer

    Google Scholar 

  • Simões AD, Tudela JA, Allende A, Puschmann R, Gil MI (2009) Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol Technol 51(3):364–370

    Article  CAS  Google Scholar 

  • Sipahi R, Castell-Perez M, Moreira R, Gomes C, Castillo A (2013) Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT Food Sci Technol 51(1):9–15

    Article  CAS  Google Scholar 

  • Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24(8):770–775

    Article  CAS  Google Scholar 

  • Siro I (2012) Active and intelligent packaging of food. In: Bhat R, Alias AK, Paliyath G (eds) Progress in food preservation. Wiley, Chichester, p 23

    Chapter  Google Scholar 

  • Sokolova E, Barabanova A, Homenko V, Solov’eva T, Bogdanovich R, Yermak I (2011) In vitro and ex vivo studies of antioxidant activity of carrageenans, sulfated polysaccharides from red algae. Bull Exp Biol Med 150(4):426–428

    Article  PubMed  CAS  Google Scholar 

  • Soto-Valdez H, Auras R, Peralta E (2011) Fabrication of poly (lactic acid) films with resveratrol and the diffusion of resveratrol into ethanol. J Appl Polym Sci 121(2):970–978

    Article  CAS  Google Scholar 

  • Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70

    Article  Google Scholar 

  • Street H (2012) Gelatin handbook. Gelatin Handb 25

    Google Scholar 

  • Sun Y, Yang B, Wu Y, Liu Y, Gu X, Zhang H, Wang C, Cao H, Huang L, Wang Z (2015) Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 178:311–318

    Article  PubMed  CAS  Google Scholar 

  • Tahiri I, Desbiens M, Benech R, Kheadr E, Lacroix C, Thibault S, Ouellet D, Fliss I (2004) Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol 97(2):123–136

    Article  PubMed  CAS  Google Scholar 

  • Tahiri I, Desbiens M, Lacroix C, Kheadr E, Fliss I (2009) Growth of Sarnobacterium divergens M35 and production of Divergicin M35 in snow crab by-product, a natural-grade medium. LWT Food Sci Technol 42(2):624–632

    Article  CAS  Google Scholar 

  • Talón E, Trifkovic KT, Nedovic VA, Bugarski BM, Vargas M, Chiralt A, González-Martínez C (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374

    Article  PubMed  CAS  Google Scholar 

  • Tezotto-Uliana JV, Fargoni GP, Geerdink GM, Kluge RA (2014) Chitosan applications pre-or postharvest prolong raspberry shelf-life quality. Postharvest Biol Technol 91:72–77

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2016) Handbook of sustainable polymers: processing and applications. CRC Press

    Google Scholar 

  • Therkelsen GH (1993) Carrageenan. In: Whistler RL, BeMiller JN (eds) Industrial gums, polysaccharides and their derivatives. Academic Press, New York, pp 145–180

    Google Scholar 

  • Tongnuanchan P, Benjakul S, Prodpran T (2012) Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem 134(3):1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Tongnuanchan P, Benjakul S, Prodpran T (2013) Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J Food Eng 117(3):350–360

    Article  CAS  Google Scholar 

  • Tongnuanchan P, Benjakul S, Prodpran T (2014) Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocoll 41:33–43

    Article  CAS  Google Scholar 

  • Van de Velde F, De Ruiter GA (2005) Carrageenan. Biopolymers Online

    Google Scholar 

  • Van de Velde F, Knutsen S, Usov A, Rollema H, Cerezo A (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13(3):73–92

    Article  Google Scholar 

  • Varela P, Fiszman S (2011) Hydrocolloids in fried foods. A review. Food Hydrocoll 25(8):1801–1812

    Article  CAS  Google Scholar 

  • Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 66–84

    Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  PubMed  CAS  Google Scholar 

  • Vermeiren L, Devlieghere F, Van Beest M, De Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77–86

    Article  CAS  Google Scholar 

  • Vu K, Hollingsworth R, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44(1):198–203

    Article  CAS  Google Scholar 

  • Wang SY, Gao H (2013) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT Food Sci Technol 52(2):71–79

    Article  CAS  Google Scholar 

  • Wang J, Hu S, Nie S, Yu Q, Xie M (2016) Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Med Cell Longev 2016:5692852

    Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15(10):390–394

    Article  PubMed  CAS  Google Scholar 

  • Williams PA, Campbell KT, Gharaviram H, Madrigal JL, Silva EA (2017) Alginate-chitosan hydrogels provide a sustained gradient of sphingosine-1-phosphate for Therapeutic Angiogenesis. Ann Biomed Eng 45(4):1003–1014

    Article  PubMed  Google Scholar 

  • Wilson MD, Stanley RA, Eyles A, Ross T (2017) Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Crit Rev Food Sci Nutr:1–12

    Google Scholar 

  • Wu Y, Rhim J, Weller C, Hamouz F, Cuppett S, Schnepf M (2000) Moisture loss and lipid oxidation for precooked beef patties stored in edible coatings and films. J Food Sci 65(2):300–304

    Article  CAS  Google Scholar 

  • Wu Y, Weller C, Hamouz F, Cuppett S, Schnepf M (2001) Moisture loss and lipid oxidation for precooked ground-beef patties packaged in edible starch-alginate-based composite films. J Food Sci 66(3):486–493

    Article  CAS  Google Scholar 

  • Wu J, Ge S, Liu H, Wang S, Chen S, Wang J, Li J, Zhang Q (2014) Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films incorporated with oregano essential oil for fish preservation. Food Packag Shelf Life 2(1):7–16

    Article  Google Scholar 

  • Wu J, Liu H, Ge S, Wang S, Qin Z, Chen L, Zheng Q, Liu Q, Zhang Q (2015) The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll 43:427–435

    Article  CAS  Google Scholar 

  • Wu J, Sun X, Guo X, Ge S, Zhang Q (2017) Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac Fish 2(4):185–192

    Article  Google Scholar 

  • Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11(13):1699–1701

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Li X, Xu Q, Jiang Y, Yun J, Li W (2010) Effects of chitosan-based coating and modified atmosphere packaging (MAP) on browning and shelf life of fresh-cut lotus root (Nelumbo nucifera Gaerth). Innov Food Sci Emerg Technol 11(4):684–689

    Article  CAS  Google Scholar 

  • Yang J-I, Ho H-Y, Chu Y-J, Chow C-J (2008) Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem 110(1):128–136

    Article  PubMed  CAS  Google Scholar 

  • Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39

    Article  CAS  Google Scholar 

  • Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127(3):235–240

    Article  PubMed  CAS  Google Scholar 

  • Yen M-T, Tseng Y-H, Li R-C, Mau J-L (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT Food Sci Technol 40(2):255–261

    Article  CAS  Google Scholar 

  • Yen M-T, Yang J-H, Mau J-L (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844

    Article  CAS  Google Scholar 

  • Youn S, Her J, Park S, Ahn D, Kim Y, Choi J (2004) Studies on the improvement of shelf-life in spicy beef meat using chitosan. J Korean Soc Food Sci Nutr 33(1):207–211

    Article  CAS  Google Scholar 

  • Yuan H, Zhang W, Li X, Lü X, Li N, Gao X, Song J (2005) Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res 340(4):685–692

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Song J, Zhang W, Li X, Li N, Gao X (2006) Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorg Med Chem Lett 16(5):1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Zactiti E, Kieckbusch T (2006) Potassium sorbate permeability in biodegradable alginate films: effect of the antimicrobial agent concentration and crosslinking degree. J Food Eng 77(3):462–467

    Article  CAS  Google Scholar 

  • Zagory D, Kader AA (1988) Modified atmosphere packaging of fresh produce. Food Technol 42(9):70–77

    Google Scholar 

  • Zeuthen P, Bøgh-Sørensen L (2003) Food preservation techniques. Elsevier

    Google Scholar 

  • Zhang H, Wang M-L, Mao Y-T (2011) Advances in the application of chitosan coating in fresh-keeping of fruits and vegetables. J Guizhou Agric Sci 10:040

    Google Scholar 

  • Zhang B, Fang C-D, Hao G-J, Zhang Y-Y (2018) Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage. Food Chem 245:254–261

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badawy, M.E.I., Rabea, E.I. (2018). Current Applications in Food Preservation Based on Marine Biopolymers. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_23

Download citation

Publish with us

Policies and ethics