Skip to main content

Estimation of Wait’s Empirical D-Region Model Parameters Based on Standard IRI Model

  • Conference paper
  • First Online:
  • 980 Accesses

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

Abstract

Wait’s 2-component ionospheric model is an appropriate tool for D-region modeling when it is investigated by Very Low Frequency (VLF) remote sensing technique. The ‘effective reflection height’ (h ) and ‘sharpness parameter’ (β) are the crucial parameters (called Wait’s parameters) of this model, which are related to log-linear altitude profile of model D-region electron density (N e). In this article, we took the standard altitude profile of D-region electron density (N e) under ambient solar conditions from ‘International Reference Ionosphere (IRI-2012)’ model and fit it with its Wait’s log-linear counterpart using Wait’s parameters as fitting parameters. The Wait’s parameters values corresponding to best fit gives a legitimate idea. We developed an automated computation mechanism to repeat this procedure under various ionospheric conditions to obtain the seasonal and diurnal variations of those parameters for different VLF propagation paths. The initial findings of our model are presented in this article.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Basak, T., Chakrabarti, S.K.: Astrophys. Space Scie., 348, 315–326 (2013)

    Article  ADS  Google Scholar 

  2. Chakraborty, S., Sasmal, S., Basak, T., Ghosh, S., Palit, S., Chakrabarti, S.K., Ray, S.: Adv Space res. 60, 1787–1796 (2017)

    Article  ADS  Google Scholar 

  3. Chowdhury, S., Kundu, S., Chakraborty, S., Basak, T., Sasmal, S., Chakrabarti, S.K. (2018, in preparation)

    Google Scholar 

  4. Ferguson, J.A.: Technical document 3030, Space and Naval Warfare Systems Center, San Diego (1998)

    Google Scholar 

  5. Ghosh, S., Chakraborty, S., Sasmal, S., Basak, T., Chakrabarti, S.K.: Geomatics and Natural Hazards (under review, 2018). TGNH-2017-0087.R2

    Google Scholar 

  6. Grubor, D., Sulic, D., Zigman, V.: Serb. Astron. 171, 29–35 (2005)

    Article  ADS  Google Scholar 

  7. Mitra, S.K.: The Upper Atmosphere. The Asiatic Society, V (1992)

    Google Scholar 

  8. Nina, A., Cadez, V., Sreckovic, V.A., Sulic, D.: Balt. Astron. 20, 609 (2011)

    ADS  Google Scholar 

  9. Nina, A., Cadez, V., Sreckovic, V.A., Sulic, D.: Nucl. Instrum. Methods in Phys. Res. B 279, 110 (2012)

    Google Scholar 

  10. Pal, S., Chakrabarti, S.K.: AIP Conf. Proc. 1286, 42–60 (2010)

    Article  ADS  Google Scholar 

  11. Pal, S., Chakrabarti, S.K., Mondal, S.K.: Adv. Space Res. 50, 196–204 (2012)

    Article  ADS  Google Scholar 

  12. Pal, S., Maji, S.K., Chakrabarti, S.K.: Planetary and Space Sci., 73(1), 310–317 (2012)

    Article  ADS  Google Scholar 

  13. Palit, S., Basak, T., Mondal, S.K., Pal, S., Chakrabarti, S.K.: Atmos. Chem. Phys., 13, 9159–9168 (2013)

    Article  ADS  Google Scholar 

  14. Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Astrophys. Space Sci. 356, 19–28 (2015)

    Article  ADS  Google Scholar 

  15. Sasmal, S., Basak, T., Chakraborty, S., Palit, S., Chakrabarti, S.K.: J Geophys. Res. 122, 7698–7712 (2017)

    Article  Google Scholar 

  16. Schmitter, E.D.: Ann. Geophys. 31(4), 765 (2013)

    Article  ADS  Google Scholar 

  17. Thomson, N.R., Clilverd, M.A.: J. Atmos. Solar Terr. Phys. 63, 1729–1737 (2001)

    Article  ADS  Google Scholar 

  18. Thomson, N.R., Rodger, C.J., Clilverd, M.A.: J. Geophys. Res. 110, A06306 (2005). https://doi.org/10.1029/2005JA011008

    ADS  Google Scholar 

  19. Wait, J.R., Spies, K.P.: NBS Tech. Note U.S. 300, 100 (1964)

    Google Scholar 

  20. Zigman, V., Grubor, D., Suli’c, D.: J. Atmos. Solar Terr. Phys. 69(7), 775–792 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Sandip K. Chakrabarti for giving us the opportunity to work in this field. We also sincerely thank Dr. Sudipta Sasmal, Dr. Tamal Basak and Dr. Suman Chakraborty for their consistent support. We thank DST-INSPIRE for financial supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kundu, S., Chowdhury, S. (2018). Estimation of Wait’s Empirical D-Region Model Parameters Based on Standard IRI Model. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_50

Download citation

Publish with us

Policies and ethics