Skip to main content

Improving Grasp Performance Using In-Hand Proximity and Contact Sensing

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 816))

Abstract

We describe the grasping and manipulation strategy that we employed at the autonomous track of the Robotic Grasping and Manipulation Competition at IROS 2016. A salient feature of our architecture is the tight coupling between visual (Asus Xtion) and tactile perception (Robotic Materials), to reduce the uncertainty in sensing and actuation. We demonstrate the importance of tactile sensing and reactive control during the final stages of grasping using a Kinova Robotic arm. The set of tools and algorithms for object grasping presented here have been integrated into the open-source Robot Operating System (ROS). We have focused exclusively on the manipulation aspect (Track 1) of the competition as the bin-picking task (Track 2) would require a different perception strategy, focusing more on object identification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/correlllab/cu-perception-manipulation-stack.

  2. 2.

    http://wiki.ros.org/openni_launch/Tutorials/IntrinsicCalibration.

References

  1. Baxter Robot Grippers, Rethink Robotics. http://www.rethinkrobotics.com/accessories/

  2. Bebionic v2 Brochure, RSL Steeper. http://www.rslsteeper.com/uploads/files/159/bebionic-ukrow-product-brochurersllit294-issue-21.pdf

  3. ILIMB User Manual, Touch Bionics. http://www.touchbionics.com

  4. Michelangelo prosthetic hand. http://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/

  5. Balasubramanian, R., Xu, L., Brook, P.D., Smith, J.R., Matsuoka, Y.: Physical human interactive guidance: identifying grasping principles from human-planned grasps. IEEE Trans. Rob. 28(4), 899–910 (2012)

    Article  Google Scholar 

  6. Bohren, J., Rusu, R.B., Jones, E.G., Marder-Eppstein, E., Pantofaru, C., Wise, M., Mösenlechner, L., Meeussen, W., Holzer, S.: Towards autonomous robotic butlers: lessons learned with the PR2. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5568–5575. IEEE (2011)

    Google Scholar 

  7. Bone, G.M., Lambert, A., Edwards, M.: Automated modeling and robotic grasping of unknown three-dimensional objects. In: IEEE International Conference on Robotics and Automation, 2008, ICRA 2008, pp. 292–298. IEEE (2008)

    Google Scholar 

  8. Breuer, T., Macedo, G.R.G., Hartanto, R., Hochgeschwender, N., Holz, D., Hegger, F., Jin, Z., Müller, C., Paulus, J., Reckhaus, M., et al.: Johnny: an autonomous service robot for domestic environments. J. Intell. Robot. Syst. 66(1–2), 245–272 (2012)

    Article  Google Scholar 

  9. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: the YCB object and model set and benchmarking protocols. arXiv preprint arXiv:1502.03143 (2015)

  10. Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous robotic grasping. Int. J. Robot. Res. 28(7), 851–867 (2009)

    Article  Google Scholar 

  11. Coleman, D., Sucan, I., Chitta, S., Correll, N.: Reducing the barrier to entry of complex robotic software: a moveit! case-study. J. Softw. Eng. Robot. Spec. Issue Best Pract. Robot Softw. Dev. 5(1), 3–16 (2014). http://arxiv.org/abs/1404.3785

  12. Correll, N., Arechiga, N., Bolger, A., Bollini, M., Charrow, B., Clayton, A., Dominguez, F., Donahue, K., Dyar, S., Johnson, L., et al.: Indoor robot gardening: design and implementation. Intel. Serv. Robot. 3(4), 219–232 (2010)

    Article  Google Scholar 

  13. Correll, N., Bekris, K.E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada, K., Rodriguez, A., Romano, J.M., Wurman, P.R.: Analysis and observations from the first amazon picking challenge. IEEE Trans. Autom. Sci. Eng. (2016)

    Google Scholar 

  14. Cox, R., Correll, N.: Merging local and global 3D perception using contact sensing. In: AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, CA (2017)

    Google Scholar 

  15. Cutkosky, M.R., Howe, R.D.: Human grasp choice and robotic grasp analysis. In: Venkataraman, S.T., Iberall, T. (eds.) Dextrous Robot Hands, pp. 5–31. Springer, New York (1990). https://doi.org/10.1007/978-1-4613-8974-3_1

    Chapter  Google Scholar 

  16. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. (2015). https://doi.org/10.1177/0278364915592961

  17. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)

    Article  Google Scholar 

  18. Dune, C., Marchand, E., Collowet, C., Leroux, C.: Active rough shape estimation of unknown objects. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3622–3627. IEEE (2008)

    Google Scholar 

  19. Farrow, N., Li, Y., Correll, N.: Morphological and embedded computation in a self-contained soft robotic hand. arXiv preprint arXiv:1605.00354 (2016)

  20. Felip, J., Morales, A.: Robust sensor-based grasp primitive for a three-finger robot hand. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1811–1816. IEEE (2009)

    Google Scholar 

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  22. Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.G.: Contact-reactive grasping of objects with partial shape information. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1228–1235. IEEE (2010)

    Google Scholar 

  23. Hsiao, K., Nangeroni, P., Huber, M., Saxena, A., Ng, A.Y.: Reactive grasping using optical proximity sensors. In: IEEE International Conference on Robotics and Automation, 2009, ICRA 2009, pp. 2098–2105. IEEE (2009)

    Google Scholar 

  24. Knepper, R.A., Srinivasa, S.S., Mason, M.T.: Hierarchical planning architectures for mobile manipulation tasks in indoor environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1985–1990. IEEE (2010)

    Google Scholar 

  25. Kroemer, O., Detry, R., Piater, J., Peters, J.: Combining active learning and reactive control for robot grasping. Robot. Auton. Syst. 58(9), 1105–1116 (2010)

    Article  Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  27. Marton, Z.c., Pangercic, D., Blodow, N., Kleinehellefort, J., Beetz, M.: General 3D modelling of novel objects from a single view. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3700–3705. IEEE (2010)

    Google Scholar 

  28. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  29. Patel, R., Canardo Alastuey, J., Correll, N.: Improving grasp performance using in-hand proximity and force sensing. In: International Symposium on Experimental Robotics (ISER), Tokyo, Japan (2016)

    Google Scholar 

  30. Patel, R., Correll, N.: Integrated force and distance sensing for robotic manipulation using elastomer-embedded commodity proximity sensors. In: Robotics: Science and Systems, Ann Arbor, MN (2016)

    Google Scholar 

  31. Rao, D., Le, Q.V., Phoka, T., Quigley, M., Sudsang, A., Ng, A.Y.: Grasping novel objects with depth segmentation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2578–2585. IEEE (2010)

    Google Scholar 

  32. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  33. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2010)

    Google Scholar 

  34. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  35. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157–173 (2008)

    Article  Google Scholar 

  36. Srinivasa, S.S., Ferguson, D., Helfrich, C.J., Berenson, D., Collet, A., Diankov, R., Gallagher, G., Hollinger, G., Kuffner, J., Weghe, M.V.: Herb: a home exploring robotic butler. Auton. Robots 28(1), 5–20 (2010)

    Article  Google Scholar 

  37. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  38. Villena-Martínez, V., Fuster-Guilló, A., Azorín-López, J., Saval-Calvo, M., Mora-Pascual, J., Garcia-Rodriguez, J., Garcia-Garcia, A.: A quantitative comparison of calibration methods for RGB-D sensors using different technologies. Sensors 17(2), 243 (2017)

    Article  Google Scholar 

  39. Weisz, J., Allen, P.K.: Pose error robust grasping from contact wrench space metrics. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 557–562. IEEE (2012)

    Google Scholar 

  40. Zhang, L., Trinkle, J.C.: The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3805–3812. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Correll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, R., Curtis, R., Romero, B., Correll, N. (2018). Improving Grasp Performance Using In-Hand Proximity and Contact Sensing. In: Sun, Y., Falco, J. (eds) Robotic Grasping and Manipulation. RGMC 2016. Communications in Computer and Information Science, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-319-94568-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94568-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94567-5

  • Online ISBN: 978-3-319-94568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics