Skip to main content

Malignant Lesions

  • Chapter
  • First Online:
  • 416 Accesses

Abstract

Breast cancer is the most common cancer in women, with over 230,000 new cases diagnosed in the United States and 1.5 million new cases of invasive carcinoma diagnosed worldwide each year. For women, there is an approximately 12.4% (1 in 8) individual lifetime chance of developing invasive breast cancer. Breast cancer death rates declined 39% from 1989 to 2015 among women, and this progress was attributed to improvements in early detection [1]. Therefore, the ultimate goal for any breast imaging modality is to decrease the mortality from breast cancer by improving breast cancer detection at its early stage and diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;65:5–29.

    Article  Google Scholar 

  2. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8.

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer. 1996;32A:2534–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gasparini C, Harris A. Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool: review. J Clin Oncol. 1995;13:765–82.

    Article  CAS  PubMed  Google Scholar 

  5. Chu JS, Lee WJ, Chang TC, Chang KJ, Hsu HC. Correlation between tumor angiogenesis and metastasis in breast cancer. J Formos Med Assoc. 1995;94:373–8.

    CAS  PubMed  Google Scholar 

  6. Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26:235–49.

    Article  PubMed  Google Scholar 

  7. Jong RA, Yaffe MJ, Skarpathiotakis M, et al. Contrast-enhanced digital mammography: initial clinical experience. Radiology. 2003;228(3):842–50.

    Article  PubMed  Google Scholar 

  8. Lewin JM, Isaacs PK, Vance V, Larke FJ. Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology. 2003;229(1):261–8.

    Article  PubMed  Google Scholar 

  9. Dromain C, Balleyguier C, Adler G, Garbay JR, Delaloge S. Contrast-enhanced digital mammography. Eur J Radiol. 2009;69(1):34–42.

    Article  PubMed  Google Scholar 

  10. Diekmann F, Freyer M, Diekmann S, et al. Evaluation of contrast-enhanced digital mammography. Eur J Radiol. 2011;78(1):112–21.

    Article  PubMed  Google Scholar 

  11. Jochelson M. Contrast-enhanced digital mammography. Radiol Clin North Am. 2014;52(3):609–16.

    Article  PubMed  Google Scholar 

  12. Diekmann F, Marx C, Jong R, Dromain C, Toledano AY, Bick U. Diagnostic accuracy of contrast enhanced digital mammography as an adjunct to mammography. Eur Radiol. 2007;17(12):3086–92.

    Article  PubMed  Google Scholar 

  13. Dromain C, Thibault F, Muller S, et al. Dual-energy contrast-enhanced digital mammography: initial clinical results. Eur J Radiol. 2011;21:565–74.

    Article  Google Scholar 

  14. Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology. 2013;266:743–51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sogani J, Morris EA, Kaplan JB, et al. Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and breast MR imaging. Radiology. 2017;282(1):63–73. https://doi.org/10.1148/radiol.2016160284.

    Article  PubMed  Google Scholar 

  16. Bhimani C, Matta D, G Roth R, et al. Contrast enhanced spectral mammography: techniques, indications and clinical applications. Acad Radiol. 2017;24:84–8.

    Article  PubMed  Google Scholar 

  17. Lalji U, Lobbes M. Contrast-enhanced dual-energy mammography: a promising new imaging tool in breast cancer detection. Womens Health. 2014;10(3):289–98.

    CAS  Google Scholar 

  18. Lobbes MB, Smidt ML, Houwers J, et al. Contrast-enhanced mammography: techniques, current results, and potential indications. Clin Radiol. 2013;68:935–44.

    Article  CAS  PubMed  Google Scholar 

  19. Hobbs MM, Taylor DB, Buzynski S, Peake RE. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): patient preferences and tolerance. J Med Imaging Radiat Oncol. 2015;59(3):300–5.

    Article  PubMed  Google Scholar 

  20. Silverstein MJ, Poller DN, Waisman JR, et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet. 1995;345(8958):1154–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lagios MD. Heterogeneity of duct carcinoma in situ (DCIS): relationship of grade and subtype analysis to local recurrence and risk of invasive transformation. Cancer Lett. 1995;90(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  22. Dershaw DD, Abramson A, Kinne DW. Ductal carcinoma in situ: mammographic findings and clinical implications. Radiology. 1989;170(2):411–5.

    Article  CAS  PubMed  Google Scholar 

  23. Holland R, Hendriks JH, Vebeek AL, Mravunac M, Schuurmans Stekhoven JH. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ. Lancet. 1990;335(8688):519–22.

    Article  CAS  PubMed  Google Scholar 

  24. Yang WT, Tse GMK. Sonographic, mammographic, and histopathologic correlation of symptomatic ductal carcinoma in situ. AJR Am J Roentgenol. 2004;182(1):101–10.

    Article  PubMed  Google Scholar 

  25. Douglas-Jones AG, Morgan JM, Appleton MA, et al. Consistency in the observation of features used to classify duct carcinoma in situ (DCIS) of the breast. J Clin Pathol. 2000;53(8):596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Consensus Conference Committee. Consensus conference on the classification of ductal carcinoma in situ. Cancer. 1997;80(9):1798–802.

    Article  Google Scholar 

  27. Lee KS, Han BH, Chun YK, Kim HS, Kim EE. Correlation between mammographic manifestations and averaged histopathologic nuclear grade using prognosis-predict scoring system for the prognosis of ductal carcinoma in situ. Clin Imaging. 1999;23(6):339–46.

    Article  CAS  PubMed  Google Scholar 

  28. Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233(3):830–49.

    Article  PubMed  Google Scholar 

  29. Orel SG, Mendonca MH, Reynolds C, Schnall MD, Solin LJ, Sullivan DC. MR imaging of ductal carcinoma in situ. Radiology. 1997;202(2):413–20.

    Article  CAS  PubMed  Google Scholar 

  30. Mokbel K. Current management of ductal carcinoma in situ of the breast. Int J Clin Oncol. 2003;8(1):18–22.

    Article  PubMed  Google Scholar 

  31. Kuhl CK, Schrading S, Bieling B, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370:485–92.

    Article  PubMed  Google Scholar 

  32. Yamada T, Mori N, Watanabe M, et al. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics. 2010;30(5):1183–98.

    Article  PubMed  Google Scholar 

  33. Tozaki M, Igarashi T, Fukuda K. Breast MRI using the VIBE sequence: clustered ring enhancement in the differential diagnosis of lesions showing non-mass like enhancement. AJR Am J Roentgenol. 2006;187(2):313–21.

    Article  PubMed  Google Scholar 

  34. Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol. 2005;15(9):2010–7.

    Article  CAS  PubMed  Google Scholar 

  35. Mossa-Basha M, Fundaro GM, Shah BA, Ali S, Pantelic MV. Ductal carcinoma in situ of the breast: MR imaging findings with histopathologic correlation. Radiographics. 2010;30(6):1673–87.

    Article  PubMed  Google Scholar 

  36. Heywang-Köbrunner SH. Contrast-enhanced magnetic resonance imaging of the breast. Invest Radiol. 1994;29(1):94–104.

    Article  PubMed  Google Scholar 

  37. Cheung YC, Juan YH, Lin YC, et al. Dual-Energy Contrast enhanced spectral mammography: enhancement analysis on BI-RADS 4 non mass microcalcifications in screened women. PLoSOne. 2016;11(9):e0162740. https://doi.org/10.1371/journal.pone.0162740.

    Article  CAS  Google Scholar 

  38. Luczynska E, Niemiec J, Hendrick E, et al. Degree of enhancement on contrast enhanced spectral mammography (CESM) and lesion type on mammography (MG): comparison based on histological results. Med Sci Monit. 2016 Oct 21;22:3886–93.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fallenberg E, Dromain C, Diekmann F, et al. Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur J Radiol. 2014;24:256–64.

    Article  CAS  Google Scholar 

  40. Carriero A, Ambrossini R, Mattei PA, et al. Magnetic resonance of the breast: correlation between enhancement patterns and microvessel density in malignant tumors. J Exp Clin Cancer Res. 2002;21(Suppl 3):83–7.

    CAS  PubMed  Google Scholar 

  41. Yamaguchi R, Furusawa H, Nakahara H, et al. Clinicopathological study of invasive ductal carcinoma with large central acellular zone: special reference to magnetic resonance imaging findings. Pathol Int. 2008;58(1):26–30.

    Article  PubMed  Google Scholar 

  42. World Health Organization. Histological typing of breast tumors. Tumori. 1982;68:181–98.

    Article  Google Scholar 

  43. Okafuji T, Yabuuchi H, Sakai S, et al. MR imaging features of pure mucinous carcinoma of the breast. Eur J Radiol. 2006;60(3):405–13.

    Article  PubMed  Google Scholar 

  44. Kawashima M, Tamaki Y, Nonaka T, et al. MR imaging of mucinous carcinoma of the breast. AJR Am J Roentgenol. 2002;179(1):179–83.

    Article  PubMed  Google Scholar 

  45. Soo MS, Williford ME, Walsh R, Bentley RC, Kornguth PJ. Papillary carcinoma of the breast: imaging findings. AJR Am J Roentgenol. 1995;164(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lam WW, Tang AP, Tse G, Chu WC. Radiology-pathology conference: papillary carcinoma of the breast. Clin Imaging. 2005;29(6):396–400.

    Article  PubMed  Google Scholar 

  47. Kuhl CK, Klaschik S, Mielcarek P, Gieseke J, Wardelmann E, Schild HH. Do T2-weighted pulse sequences help with the differential diagnosis of enhancing lesions in dynamic breast MRI? J Magn Reson Imaging. 1999;9(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  48. Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):R149–56.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW, Stewart HJ. Infiltrating lobular carcinoma of the breast: an evaluation of the incidence and consequence of bilateral disease. Br J Surg. 1983;70(9):513–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lopez JK, Bassett LW. Invasive lobular carcinoma of the breast: spectrum of mamographic, US, and MR imaging findings. Radiographics. 2009;29:165–76.

    Article  PubMed  Google Scholar 

  51. Paramagul CP, Helvie MA, Adler DD. Invasive lobular carcinoma: sonographic appearance and role of sonography in improving diagnostic sensitivity. Radiology. 1995;195(1):231–4.

    Article  CAS  PubMed  Google Scholar 

  52. Butler RS, Venta LA, Wiley EL, Ellis RL, Dempsey PJ, Rubin E. Sonographic evaluation of infiltrating lobular carcinoma. AJR Am J Roentgenol. 1999;172(2):325–30.

    Article  CAS  PubMed  Google Scholar 

  53. Selinko VL, Middleton LP, Dempsey PJ. Role of sonography in diagnosing and staging invasive lobular carcinoma. J Clin Ultrasound. 2004;32(7):323–32.

    Article  PubMed  Google Scholar 

  54. Mann RM, Hoogeveen YL, Blickman JG, Boetes C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature. Breast Cancer Res Treat. 2008;107(1):1–14.

    Article  PubMed  Google Scholar 

  55. Weinstein SP, Orel SG, Heller R, et al. MR imaging of the breast in patients with invasive lobular carcinoma. AJR Am J Roentgenol. 2001;176(2):399–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Nori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nori, J., Bellini, C., Piccolo, C. (2018). Malignant Lesions. In: Nori, J., Kaur, M. (eds) Contrast-Enhanced Digital Mammography (CEDM). Springer, Cham. https://doi.org/10.1007/978-3-319-94553-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94553-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94552-1

  • Online ISBN: 978-3-319-94553-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics