Skip to main content

The Kinematics of the Three Compartments of the Native and Partially Implanted Knee

  • Chapter
  • First Online:
Book cover Partial Knee Arthroplasty

Abstract

The biomechanics of the human knee joint has been a subject of speculation since the past century. Various theories as to how the tibia, the femur, and the patella articulate with respect to each other have developed as a result of researches involving cadavers and living subjects. The importance of the insight in replaced-knee kinematics in loading and unloading conditions has been demonstrated with the relation between joint motion and postoperative knee functioning. Different methods have been applied in order to study the functional kinematics of the human knee, taking into account how muscle activation, movement, and loading condition in different activities affect joint motion and bones’ relative positions. Differences have been reported relative to the kinematic behavior of the native, osteoarthritic, and implanted knee, in particular for what concern patterns of anterior-posterior displacement of the femoral condyles relative to the tibia and axial rotation. In the present chapter, the different approaches for knee kinematics investigation have been analyzed and described in the native joint, in knees with medial osteoarthritis and with unicompartmental arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber WE, Weber E. Mechanics of the human walking apparatus. Translated by Maquet P and Furlong R Berlin etc: Springer 75; 1992 (Original Publication: Mechanik der menschlichen Gehwerkzeuge. Gottingen, 1836).

    Google Scholar 

  2. Zuppinger H. Die aktive flexion im unbelasteten Kniegelenk: Züricher Habil Schr. Bergmann: Wiesbaden; 1994. p. 703–63.

    Google Scholar 

  3. Frankel VH, Burstein AH, Brooks DB. Biomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg. 1971;53-A:945–77.

    Article  Google Scholar 

  4. Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.

    Article  CAS  Google Scholar 

  5. Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and the tibia in the unloaded cadaver knee. J Bone Joint Surg. 2000;82-B:1189–95.

    Article  Google Scholar 

  6. Eckhoff DE, Hogan C, DiMatteo L, et al. Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop. 2007;461:238–44.

    PubMed  Google Scholar 

  7. Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.

    Article  CAS  Google Scholar 

  8. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  Google Scholar 

  9. Moro-Oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.

    Article  Google Scholar 

  10. Karrholm J, Brandsson S, Freeman MAR. Tibiofemoral movement: changes of axial rotation caused by forced rotation at the weight bearing knee studied by RSA. J Bone Joint Surg. 2000;82-B:1201–3.

    Article  Google Scholar 

  11. Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MAR, Yamano Y. Tibiofemoral movement: full flexion in the living knee studied by MRI. J Bone Joint Surg. 2000;82-B:1199–200.

    Article  Google Scholar 

  12. Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech. 2005;38:269–76.

    Article  CAS  Google Scholar 

  13. Moro-Oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res. 2007;25(7):867–72.

    Article  Google Scholar 

  14. Williams A, Phillips C. Functional in vivo kinematics analysis of the normal knee. Chapter 5. Total knee arthroplasty – a guide to get better performance. Springer: Berlin/Heidelberg; 2005.

    Google Scholar 

  15. Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA. In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon). 2009;24(1):71–6. https://doi.org/10.1016/j.clinbiomech.2008.08.007.

    Article  Google Scholar 

  16. Hamai S, Moro-Oka TA, Dunbar NJ, Miura H, Iwamoto Y, Banks SA. In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int. 2013:717546. https://doi.org/10.1155/2013/717546.

    Article  Google Scholar 

  17. Hamai S, Moro-Oka T, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res. 2009;27:1555–61.

    Article  Google Scholar 

  18. Fiacchi F, Zambianchi F, Digennaro V, Ricchiuto I, Mugnai R, Catani F. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living. Knee. 2014;21(Suppl 1):S10–4. https://doi.org/10.1016/S0968-0160(14)50003-8.

    Article  PubMed  Google Scholar 

  19. Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K. Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop. 2005;433:147–51.

    Article  Google Scholar 

  20. Nagao N, Tachibana T, Mizuno K. The rotational angle in osteoarthritic knees. Int Orthop. 1998;22:282–7.

    Article  CAS  Google Scholar 

  21. Matsuki K, Matsuki KO, Kenmoku T, Yamaguchi S, Sasho T, Banks SA. In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities. Gait Posture. 2017;58:214–9. https://doi.org/10.1016/j.gaitpost.2017.07.116.

    Article  PubMed  Google Scholar 

  22. Moschella D, Blasi A, Leardini A, Ensini A, Catani F. Wear patterns on tibial plateau from varus osteoarthritic knees. Clin Biomech. 2006;21:152–8.

    Article  CAS  Google Scholar 

  23. Lu T, Tsai T, Kuo M, Hsu HC, Chen HL. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys. 2008;30:1004–12.

    Article  CAS  Google Scholar 

  24. Dennis D, Mahfouz M, Komistek R, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.

    Article  Google Scholar 

  25. Jamali AA, Scott RD, Rubash HE, Freiberg AA. Unicompartmental knee arthroplasty: past, present, and future. Am J Orthop. 2009;38(1):17–23.

    PubMed  Google Scholar 

  26. Heyse TJ, El-Zayat BF, De Corte R, Chevalier Y, Scheys L, Innocenti B, Fuchs-Winkelmann S, Labey L. UKA closely preserves natural knee kinematics in vitro. Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1902–10.

    Article  Google Scholar 

  27. Deschamps G, Lapeyre B. Rupture of the anterior cruciate ligament: a frequently unrecognized cause of failure of unicompartmental knee prostheses. Rev Chir Orthop Reparatrice Appar Mot. 1987;73(7):544–51.

    CAS  PubMed  Google Scholar 

  28. Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg. 2004;86-A(3):506–11.

    Article  Google Scholar 

  29. Argenson JN, Komistek RD, Aubaniac JM, et al. In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplast. 2002;17(8):1049–54.

    Article  Google Scholar 

  30. Nishio Y, Onodera T, Kasahara Y, Takahashi D, Iwasaki N, Majima T. Intraoperative medial pivot affects deep knee flexion angle and patient-reported outcomes after total knee arthroplasty. J Arthroplast. 2014;29(4):702–6.

    Article  Google Scholar 

  31. Kia M, Warth LC, Lipman JD, et al. Fixed-bearing medial unicompartmental knee arthroplasty restores neither the medial pivoting behavior nor the ligament forces of the intact knee in passive flexion. J Orthop Res. 2017; https://doi.org/10.1002/jor.23838.

    Article  Google Scholar 

  32. Mochizuki T, Sato T, Tanifuji O, et al. In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty. J Orthop Sci. 2013;18(1):54–60.

    Article  Google Scholar 

  33. Watanabe T, Abbasi AZ, Conditt MA, Christopher J, Kreuzer S, Otto JK, Banks SA. In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty. J Orthop Sci. 2014;19(4):552–7. https://doi.org/10.1007/s00776-014-0578-3.

    Article  PubMed  Google Scholar 

  34. Grant AL, Doma KD, Hazratwala K. Determination of the accuracy of navigated kinematic unicompartmental knee arthroplasty: a 2-year follow-up. J Arthroplast. 2017;32(5):1443–52. https://doi.org/10.1016/j.arth.2016.11.036.

    Article  Google Scholar 

  35. Zhang Z, Zhu W, Zhu L, Du Y. Superior alignment but no difference in clinical outcome after minimally invasive computer-assisted unicompartmental knee arthroplasty (MICA-UKA). Knee Surg Sports Traumatol Arthrosc. 2016;24(11):3419–24.

    Article  Google Scholar 

  36. Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, Visani A, Marcacci M. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res. 2009;27(2):202–7.

    Article  Google Scholar 

  37. Burton A, Williams S, Brockett CL, Fisher J. In vitro comparison of fixed- and mobile meniscal-bearing unicondylar knee arthroplasties: effect of design, kinematics, and condylar liftoff. J Arthroplast. 2012;27(8):1452–9. https://doi.org/10.1016/j.arth.2012.02.011.

    Article  Google Scholar 

  38. Small SR, Berend ME, Rogge RD, Archer DB, Kingman AL, Ritter MA. Tibial loading after UKA: evaluation of tibial slope, resection depth, medial shift and component rotation. J Arthroplast. 2013;28(9 Suppl):179–83. https://doi.org/10.1016/j.arth.2013.01.004.

    Article  Google Scholar 

  39. Ettinger M, Zoch JM, Becher C, Hurschler C, Stukenborg-Colsman C, Claassen L, Ostermeier S, Calliess T. In vitro kinematics of fixed versus mobile bearing in unicondylar knee arthroplasty. Arch Orthop Trauma Surg. 2015;135(6):871–7. https://doi.org/10.1007/s00402-015-2214-x.

    Article  PubMed  Google Scholar 

  40. Cassidy KA, Tucker SM, Rajak Y, Kia M, Imhauser CW, Westrich GH, Heyse TJ. Kinematics of passive flexion following balanced and overstuffed fixed bearing unicondylar knee arthroplasty. Knee. 2015;22(6):542–6. https://doi.org/10.1016/j.knee.2015.07.014.

    Article  PubMed  Google Scholar 

  41. Heyse TJ, Slane J, Peersman G, Dworschak P, Fuchs-Winkelmann S, Scheys L. Balancing mobile-bearing unicondylar knee arthroplasty in vitro. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3733–40. https://doi.org/10.1007/s00167-016-4241-8.

    Article  PubMed  Google Scholar 

  42. Peersman G, Slane J, Vuylsteke P, Fuchs-Winkelmann S, Dworschak P, Heyse T, Scheys L. Kinematics of mobile-bearing unicompartmental knee arthroplasty compared to native: results from an in vitro study. Arch Orthop Trauma Surg. 2017;137(11):1557–63. https://doi.org/10.1007/s00402-017-2794-8.

    Article  PubMed  Google Scholar 

  43. Kwon OR, Kang KT, Son J, Kwon SK, Jo SB, Suh DS, Choi YJ, Kim HJ, Koh YG. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res. 2014;32(2):338–45. https://doi.org/10.1002/jor.22499.

    Article  PubMed  Google Scholar 

  44. Kwon OR, Kang KT, Son J, Suh DS, Baek C, Koh YG. Importance of joint line preservation in unicompartmental knee arthroplasty: finite element analysis. J Orthop Res. 2017;35(2):347–52. https://doi.org/10.1002/jor.23279.

    Article  CAS  PubMed  Google Scholar 

  45. Innocenti B, Pianigiani S, Ramundo G, Thienpont E. Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty. J Arthroplast. 2016;31(12):2685–91. https://doi.org/10.1016/j.arth.2016.07.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zambianchi, F., Nakamura, S., Fiacchi, F., Matsuda, S., Catani, F. (2019). The Kinematics of the Three Compartments of the Native and Partially Implanted Knee. In: Argenson, JN., Dalury, D. (eds) Partial Knee Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-94250-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94250-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94249-0

  • Online ISBN: 978-3-319-94250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics