Skip to main content

Introduction

  • Chapter
  • First Online:
  • 899 Accesses

Part of the book series: Information Fusion and Data Science ((IFDS))

Abstract

This chapter gives an overall introduction to this book. First, we discuss the importance of the prediction for industrial process. Then, we divide the data-driven prediction methodology discussed in this book into a number of categories. Specifically, there are three categories, i.e., data feature-based methods, time scale-based ones, and prediction reliability-based ones. Besides, considering the characteristics of prediction modeling and industrial demands, this book introduces some commonly used prediction techniques, including the time series-based methods, the factor-based methods, the prediction intervals (PIs) construction methods, and the granular-based long-term prediction methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Base, L. T. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  2. Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  3. Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

    Book  Google Scholar 

  4. Ekkachai, K., & Nilkhamhang, I. (2016). Swing phase control of semi-active prosthetic knee using neural network predictive control with particle swarm optimization. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(11), 1169.

    Article  Google Scholar 

  5. Jian, L., & Gao, C. (2013). Binary coding SVMs for the multiclass problem of blast furnace system. IEEE Transactions on Industrial Electronics, 60(9), 3846–3856.

    Article  Google Scholar 

  6. Zhang, Y., Teng, Y., & Zhang, Y. (2010). Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science, 65(6), 2153–2158.

    Article  Google Scholar 

  7. Lakehal, A., & Tachi, F. (2017). Bayesian duval triangle method for fault prediction and assessment of oil immersed transformers. Measurement and Control, 50(4), 103–109.

    Article  Google Scholar 

  8. Reese, B. M., & Collins, E. G., Jr. (2016). A graph search and neural network approach to adaptive nonlinear model predictive control. Engineering Applications of Artificial Intelligence, 55, 250–268.

    Article  Google Scholar 

  9. Jiang, S. L., Liu, M., Lin, J. H., et al. (2016). A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production. Knowledge-Based Systems, 111, 159–172.

    Article  Google Scholar 

  10. Fu, T. C. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1), 164–181.

    Article  Google Scholar 

  11. Nurkkala, A., Pettersson, F., & Saxén, H. (2011). Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace. Industrial and Engineering Chemistry Research, 50(15), 9236–9248.

    Article  Google Scholar 

  12. Han, H. G., Zhang, L., Hou, Y., et al. (2016). Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Transactions on Neural Networks & Learning Systems, 27(2), 402.

    Article  MathSciNet  Google Scholar 

  13. Costa, A., Crespo, A., Navarro, J., et al. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6), 1725–1744.

    Article  Google Scholar 

  14. Wang, W., Pedrycz, W., & Liu, X. (2015). Time series long-term forecasting model based on information granules and fuzzy clustering. Engineering Applications of Artificial Intelligence, 41(C, 17–24.

    Article  Google Scholar 

  15. Khosravi, A., Nahavandi, S., Creighton, D., et al. (2011a). Comprehensive review of neural network-based prediction intervals and new advances. IEEE Transactions on Neural Networks, 22(9), 1341–1356.

    Article  Google Scholar 

  16. Brahim-Belhouari, S., & Bermak, A. (2004). Gaussian process for nonstationary time series prediction. Computational Statistics & Data Analysis, 47(4), 705–712.

    Article  MathSciNet  Google Scholar 

  17. Aye, S. A., & Heyns, P. S. (2017). An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mechanical Systems & Signal Processing, 84, 485–498.

    Article  Google Scholar 

  18. Keprate, A., Ratnayake, R. M. C., & Sankararaman, S. (2017). Adaptive Gaussian process regression as an alternative to FEM for prediction of stress intensity factor to assess fatigue degradation in offshore pipeline. International Journal of Pressure Vessels & Piping, 153, 45–58.

    Article  Google Scholar 

  19. Wang, F., Su, J., & Wang, Z. (2018). Prediction of subsidence of buildings as a result of earthquakes by Gaussian process regression. Chemistry & Technology of Fuels & Oils, 99, 363–373.

    Google Scholar 

  20. Jani, D. B., Mishra, M., & Sahoo, P. K. (2017). Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review. Renewable & Sustainable Energy Reviews, 80, 352–366.

    Article  Google Scholar 

  21. Sujay, R. N., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing Journal, 19(6), 372–386.

    Google Scholar 

  22. Robert, C. (2012). Machine learning, a probabilistic perspective. Cambridge: MIT Press.

    Google Scholar 

  23. Jacobsson, H. (2005). Rule extraction from recurrent neural networks: A taxonomy and review. Neural Computation, 17(6), 1223–1263.

    Article  MathSciNet  Google Scholar 

  24. Beyhan, S. (2017). Affine TS fuzzy model-based estimation and control of Hindmarsh-Rose neuronal model. IEEE Transactions on Systems Man & Cybernetics Systems, 47(8), 2342–2350.

    Article  Google Scholar 

  25. Li, Y., Zhang, W., Xiong, Q., et al. (2017). A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM. Journal of Mechanical Science & Technology, 31(6), 2711–2722.

    Article  Google Scholar 

  26. Wild, C. J., & Seber, G. A. F. (1989). Nonlinear regression. New York: Wiley.

    MATH  Google Scholar 

  27. Nix, D. A., & Weigend, A. S. (1994). Estimating the mean and variance of the target probability distribution. In Proceedings of IEEE International Conference on Neural Networks (Vol. 1, pp. 55–60), Orlando, FL, 1994.

    Google Scholar 

  28. Pan, L., & Politis, D. N. (2016). Bootstrap prediction intervals for Markov processes. Computational Statistics & Data Analysis, 100, 467–494.

    Article  MathSciNet  Google Scholar 

  29. Khosravi, A., Nahavandi, S., Creighton, D., et al. (2011b). Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Transactions on Neural Networks, 22(3), 337–346.

    Article  Google Scholar 

  30. Sheng, C., Zhao, J., & Wang, W. (2017). Map-reduce framework-based non-iterative granular echo state network for prediction intervals construction. Neurocomputing, 222, 116–126.

    Article  Google Scholar 

  31. Skowron, A., & Stepaniuk, J. (2001). Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems, 16(1), 57–85.

    Article  Google Scholar 

  32. Pedrycz, W. (2005). Knowledge-based clustering: From data to information granules. Chichester: Wiley-Interscience.

    Book  Google Scholar 

  33. Lu, W., Chen, X., Pedrycz, W., et al. (2015). Using interval information granules to improve forecasting in fuzzy time series. International Journal of Approximate Reasoning, 57(1), 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, J., Wang, W., Sheng, C. (2018). Introduction. In: Data-Driven Prediction for Industrial Processes and Their Applications. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-94051-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94051-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94050-2

  • Online ISBN: 978-3-319-94051-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics