Skip to main content

Cohomology of Algebraic Groups with Coefficients in Twisted Representations

  • Conference paper
  • First Online:
Geometric and Topological Aspects of the Representation Theory of Finite Groups (PSSW 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 242))

Included in the following conference series:

Abstract

This article is a survey on the cohomology of a reductive algebraic group with coefficients in twisted representations. A large part of the paper is devoted to the advances obtained by the theory of strict polynomial functors initiated by Friedlander and Suslin in the late 90s. The last section explains that the existence of certain ‘universal classes’ used to prove cohomological finite generation is equivalent to some recent ‘untwisting theorems’ in the theory of strict polynomial functors. We actually provide thereby a new proof of these theorems.

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, that the \(GL_d\)-module \(G(\Bbbk ^d)\) has a costandard filtration, which is equivalent to the fact that the functor G has a Schur filtration, i.e. a filtration whose subquotients are direct sums of Schur functors as defined in [1]. It then follows from [1, Theorem II.2.16] that the parametrized functor \(G_W\) also has a Schur filtration. The Ext condition follows by a highest weight category argument.

  2. 2.

    Moreover conditions (2) and (3) for bifunctors can also be deduced from computations already published in the literature. Indeed, for \(E=\Bbbk \) (concentrated in degree zero) the statement follows from [12, Theorem 1.8], [32, Theorem Proposition 5.4] or the computations of [4, p. 781]. For an arbitrary E, the computations can be deduced from the case \(E=\Bbbk \) by using the isomorphism \(\mathrm {H}^*_{E,\mathrm {gl}}(B)\simeq \mathrm {H}^*_{\mathrm {gl}}(B_E)\) explained at the end of Sect. 5.6.4.

References

  1. K. Akin, D. A. Buchsbaum, J. Weyman, Schur functors and Schur complexes. Adv. in Math. 44 (1982), no. 3, 207–278.

    Article  MathSciNet  Google Scholar 

  2. H.H. Andersen, J.C. Jantzen, Cohomology of induced representations for algebraic groups. Math. Ann. 269 (1984), no. 4, 487–525.

    Article  MathSciNet  Google Scholar 

  3. C. Bendel, D. Nakano and C. Pillen, On the vanishing ranges for the cohomology of finite groups of Lie type, Int. Math. Res. Not. (2011).

    Google Scholar 

  4. M. Chałupnik, Extensions of strict polynomial functors. Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 773–792.

    Article  MathSciNet  Google Scholar 

  5. M. Chałupnik, Derived Kan Extension for strict polynomial functors, Int. Math. Res. Not. IMRN 2015, no. 20, 10017–10040.

    Article  MathSciNet  Google Scholar 

  6. S. C. Chevalley 1956–1958, Classification des groupes de Lie algébriques, Paris 1958 (Secr. Math.).

    Google Scholar 

  7. E. Cline, B. Parshall, L. Scott, W. van der Kallen, Rational and generic cohomology. Invent. Math. 39 (1977), no. 2, 143–163.

    Article  MathSciNet  Google Scholar 

  8. E. Cline, B. Parshall, L. Scott, Detecting rational cohomology of algebraic groups, J. London Math. Soc. (2) 28 (1983), no. 2, 293–300.

    Article  MathSciNet  Google Scholar 

  9. S. Eilenberg, S. MacLane, On the groups \(H(\Pi ,n)\). II. Methods of computation. Ann. of Math. (2) 60, (1954). 49–139.

    Google Scholar 

  10. L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239.

    Article  MathSciNet  Google Scholar 

  11. Z. Fiedorowicz and S. Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, vol. 674, Springer, Berlin, 1978.

    Chapter  Google Scholar 

  12. V. Franjou, E. Friedlander, Cohomology of bifunctors. Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 514–544.

    Article  MathSciNet  Google Scholar 

  13. V. Franjou, E. Friedlander, A. Scorichenko, A. Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), no. 2, 663–728.

    Article  MathSciNet  Google Scholar 

  14. V. Franjou, E. Friedlander, T. Pirashvili, L. Schwartz, Rational representations, the Steenrod algebra and functor homology, Panor. Synthèses, 16, Soc. Math. France, Paris, 2003.

    Google Scholar 

  15. E. Friedlander, Lectures on the cohomology of finite group schemes, in Rational representations, the Steenrod algebra and functor homology, 27–53, Panor. Synthèses, 16, Soc. Math. France, Paris, 2003.

    Google Scholar 

  16. E. Friedlander, B. Parshall, On the cohomology of algebraic and related finite groups. Invent. Math. 74 (1983), no. 1, 85–117.

    Article  MathSciNet  Google Scholar 

  17. E. Friedlander, B. Parshall, Cohomology of Lie algebras and algebraic groups. Amer. J. Math. 108 (1986), no. 1, 235–253 (1986).

    Article  MathSciNet  Google Scholar 

  18. E. Friedlander, A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997) 209–270.

    Article  MathSciNet  Google Scholar 

  19. J. A. Green, Polynomial representations of \({\rm GL}_{n}\). Lecture Notes in Mathematics, 830. Springer-Verlag, Berlin-New York, 1980.

    Google Scholar 

  20. J. C. Jantzen, Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  21. H. Krause, Koszul, Ringel and Serre Duality for strict polynomial functors, Compos. Math. 149 (2013), no. 6, 996–1018.

    Article  MathSciNet  Google Scholar 

  22. I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1979.

    Google Scholar 

  23. E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik \(p\). Nachr. Ges. Wiss.Göttingen (1926) 28–35, Collected papers, Springer Verlag, Berlin 1983, pp. 495–492.

    Google Scholar 

  24. B. Parshall, L. Scott, D. Stewart, Shifted generic cohomology, Compositio Math. 149 (2013), 1765–1788.

    Article  MathSciNet  Google Scholar 

  25. V. T. Pham, Applications des foncteurs strictement polynomiaux, Ph.D. Thesis, Paris 13 University, 2015 (under the direction of L. Schwartz and A. Touzé).

    Google Scholar 

  26. D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field ,Ann. of Math.(2) 96 (1972), 552–586.

    Google Scholar 

  27. I. Schur, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, 1927, in Gesammelte Abhandlungen. Vol III (eds. Alfred Brauer und Hans Rohrbach) Springer-Verlag, Berlin-New York, 1973, pp. 68–85.

    Google Scholar 

  28. R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963) 33–56.

    Article  MathSciNet  Google Scholar 

  29. R. Steinberg, Lectures on Chevalley groups. Notes prepared by John Faulkner and Robert Wilson. Revised and corrected edition of the 1968 original. With a foreword by Robert R. Snapp. University Lecture Series, 66. American Mathematical Society, Providence, RI, 2016.

    Google Scholar 

  30. A. Touzé, Universal classes for algebraic groups, Duke Math. J. 151 (2010), no. 2, 219–249.

    Article  MathSciNet  Google Scholar 

  31. A. Touzé, Cohomology of classical algebraic groups from the functorial viewpoint, Adv. Math. 225 (2010) 33–68.

    Article  MathSciNet  Google Scholar 

  32. A. Touzé, Troesch complexes and extensions of strict polynomial functors, Ann. Sci. E.N.S. 45 (2012), no. 1, 53–99.

    Article  MathSciNet  Google Scholar 

  33. A. Touzé, A construction of the universal classes for algebraic groups with the twisting spectral sequence. Transform. Groups 18 (2013), no. 2, 539–556.

    Article  MathSciNet  Google Scholar 

  34. A. Touzé, Foncteurs strictement polynomiaux et applications, Habilitation Thesis, Paris 13 University, 2014.

    Google Scholar 

  35. A. Touzé, W. van der Kallen, Bifunctor cohomology and Cohomological finite generation for reductive groups, Duke Math. J. 151 (2010), no. 2, 251–278.

    Article  MathSciNet  Google Scholar 

  36. W. van der Kallen, Cohomology with Grosshans graded coefficients, In: Invariant Theory in All Characteristics, Edited by: H. E. A. Eddy Campbell and David L. Wehlau, CRM Proceedings and Lecture Notes, Volume 35 (2004) 127-138, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  37. W. C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, 66. Springer-Verlag, New York-Berlin, 1979.

    Chapter  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee for very carefully reading a first version of the article and detecting several mistakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Touzé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Touzé, A. (2018). Cohomology of Algebraic Groups with Coefficients in Twisted Representations. In: Carlson, J., Iyengar, S., Pevtsova, J. (eds) Geometric and Topological Aspects of the Representation Theory of Finite Groups. PSSW 2016. Springer Proceedings in Mathematics & Statistics, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-319-94033-5_18

Download citation

Publish with us

Policies and ethics