Skip to main content

Examples of Descent up to Nilpotence

  • Conference paper
  • First Online:
Geometric and Topological Aspects of the Representation Theory of Finite Groups (PSSW 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 242))

Included in the following conference series:

Abstract

We give a survey of the ideas of descent and nilpotence, beginning with the theory of thick subcategories. We focus on examples arising from chromatic homotopy theory (such as Rognes’ Galois extensions) and from group actions, as well as a few examples in algebra. These ideas provide tools for studying certain invariants of tensor-triangulated categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that the descent-theoretic approach to Picard groups uses \(\infty \)-categorical technology in an essential manner.

  2. 2.

    We remind the reader that taking retracts, in the \(\infty \)-categorical setting, is not a finite homotopy limit.

  3. 3.

    In fact, \(\eta ^3 = 0\) in \(\pi _*(KO)\).

  4. 4.

    Stated another way, if \(BGL_1(R)\) denotes the classifying space of rank 1 R-modules, then the composite \( BC_p \rightarrow BGL_1(R) \) classifying the representation sphere is nullhomotopic. We refer to [2] for a detailed treatment.

  5. 5.

    For the results below, it is best not only to restrict to \(\mathbb {E}_{\infty }\)-rings as many natural examples are not (or not known to be) \(\mathbb {E}_{\infty }\). If R is \(\mathbb {E}_{\infty }\), the two statements in the question are equivalent.

References

  1. Revêtements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)].

    Google Scholar 

  2. M. Ando, A. J. Blumberg, D. Gepner, M. J. Hopkins, and C. Rezk. An \(\infty \)-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology. J. Topol., 7(3):869–893, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. L. Avramov, R.-O. Buchweitz, S. B. Iyengar, and C. Miller. Homology of perfect complexes. Adv. Math., 223(5):1731–1781, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Baker and B. Richter. Invertible modules for commutative \({\mathbb{S}}\)-algebras with residue fields. Manuscripta Math., 118(1):99–119, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., 588:149–168, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Balmer. Descent in triangulated categories. Math. Ann., 353(1):109–125, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Balmer. Separable extensions in tensor-triangular geometry and generalized Quillen stratification. Ann. Sci. Éc. Norm. Supér. (4), 49(4):907–925, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Balmer, I. Dell’Ambrogio, and B. Sanders. Restriction to finite-index subgroups as étale extensions in topology, KK-theory and geometry. Algebr. Geom. Topol., 15(5):3025–3047, 2015.

    Article  MATH  Google Scholar 

  9. R. Banerjee. Galois descent for real spectra. arXiv preprint arXiv:1305.4360, 2013.

  10. T. Bauer. Convergence of the Eilenberg-Moore spectral sequence for generalized cohomology theories. 2008. Available at http://arxiv.org/pdf/0803.3798.pdf.

  11. B. Bhatt and P. Scholze. Projectivity of the Witt vector affine Grassmannian. Invent. Math., 209(2):329–423, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257–281, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York, 1972.

    Google Scholar 

  14. J. F. Carlson. Cohomology and induction from elementary abelian subgroups. Q. J. Math., 51(2):169–181, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. D. Christensen. Ideals in triangulated categories: phantoms, ghosts and skeleta. Adv. Math., 136(2):284–339, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. D. Christensen and N. P. Strickland. Phantom maps and homology theories. Topology, 37(2):339–364, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Clausen, A. Mathew, N. Naumann, and J. Noel. Descent in algebraic \(K\)-theory and a conjecture of Ausoni-Rognes. arXiv preprint arXiv:1606.03328, 2016.

  18. E. S. Devinatz, M. J. Hopkins, and J. H. Smith. Nilpotence and stable homotopy theory. I. Ann. of Math. (2), 128(2):207–241, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. G. Dwyer, J. P. C. Greenlees, and S. Iyengar. Duality in algebra and topology. Adv. Math., 200(2):357–402, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.

    Google Scholar 

  21. D. Gepner and T. Lawson. Brauer groups and Galois cohomology of commutative \({\mathbb{S}}\)-algebras. arXiv preprint arXiv:1607.01118.

  22. J. González. A vanishing line in the BP\(\langle 1\rangle \)-Adams spectral sequence. Topology, 39(6):1137–1153, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. J. Green. The essential ideal in group cohomology does not square to zero. J. Pure Appl. Algebra, 193(1-3):129–139, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Mem. Amer. Math. Soc., 113(543):viii+178, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. P. C. Greenlees and H. Sadofsky. The Tate spectrum of \(v_n\)-periodic complex oriented theories. Math. Z., 222(3):391–405, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Gruson and C. U. Jensen. Dimensions cohomologiques reliées aux foncteurs \(\varprojlim ^{(i)}\). In Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), volume 867 of Lecture Notes in Math., pages 234–294. Springer, Berlin-New York, 1981.

    Google Scholar 

  27. D. Heard, A. Mathew, and V. Stojanoska. Picard groups of higher real \(K\)-theory spectra at height \(p-1\). Compos. Math., 153(9):1820–1854, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Hess. Homotopic Hopf-Galois extensions: foundations and examples. In New topological contexts for Galois theory and algebraic geometry (BIRS 2008), volume 16 of Geom. Topol. Monogr., pages 79–132. Geom. Topol. Publ., Coventry, 2009.

    Google Scholar 

  29. K. Hess. A general framework for homotopic descent and codescent. arXiv preprint arXiv:1001.1556.

  30. M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. Ann. of Math. (2), 184(1):1–262, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Hopkins and J. Lurie. Ambidexterity in \(K(n)\)-local stable homotopy theory. 2013. Available at http://www.math.harvard.edu/~lurie.

  32. M. J. Hopkins. The mathematical work of Douglas C. Ravenel. Homology, Homotopy Appl., 10(3):1–13, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel. Generalized group characters and complex oriented cohomology theories. J. Amer. Math. Soc., 13(3):553–594 (electronic), 2000.

    Article  MathSciNet  Google Scholar 

  34. M. J. Hopkins, J. H. Palmieri, and J. H. Smith. Vanishing lines in generalized Adams spectral sequences are generic. Geom. Topol., 3:155–165 (electronic), 1999.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1–49, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Hovey and N. P. Strickland. Morava \(K\)-theories and localisation. Mem. Amer. Math. Soc., 139(666):viii+100, 1999.

    Google Scholar 

  37. J. R. Klein. Axioms for generalized Farrell-Tate cohomology. J. Pure Appl. Algebra, 172(2-3):225–238, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  38. N. J. Kuhn. Tate cohomology and periodic localization of polynomial functors. Invent. Math., 157(2):345–370, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Lawson and N. Naumann. Commutativity conditions for truncated Brown-Peterson spectra of height 2. J. Topol., 5(1):137–168, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.

    Google Scholar 

  41. J. Lurie. Chromatic homotopy theory, 2010. Course notes available at http://math.harvard.edu/~lurie/252x.html.

  42. J. Lurie. DAG XIII: Rational and \(p\)-adic homotopy theory. 2011. Available at http://math.harvard.edu/~lurie.

  43. J. Lurie. Derived algebraic geometry VII: spectral schemes. 2011. Available at http://www.math.harvard.edu/~lurie/papers/DAG-VII.pdf.

  44. J. Lurie. Higher algebra. 2016. Available at http://www.math.harvard.edu/~lurie/papers/HA.pdf.

  45. J. Lurie. Spectral algebraic geometry. Available at http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf, 2016.

  46. M. Mahowald. \(b\)o-resolutions. Pacific J. Math., 92(2):365–383, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Marx. The restriction map in cohomology of finite \(2\)-groups. J. Pure Appl. Algebra, 67(1):33–37, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Mathew. A thick subcategory theorem for modules over certain ring spectra. Geom. Topol., 19(4):2359–2392, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Mathew. Torus actions on stable module categories, Picard groups, and localizing subcategories. arXiv preprint arXiv:1512.01716, 2015.

  50. A. Mathew. The Galois group of a stable homotopy theory. Adv. Math., 291:403–541, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Mathew. The homology of tmf. Homology Homotopy Appl., 18(2):1–29, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Mathew. Torsion exponents in stable homotopy and the Hurewicz homomorphism. Algebr. Geom. Topol., 16(2):1025–1041, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Mathew and L. Meier. Affineness and chromatic homotopy theory. J. Topol., 8(2):476–528, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Mathew, N. Naumann, and J. Noel. Derived induction and restriction theory. 2015.

    Google Scholar 

  55. A. Mathew, N. Naumann, and J. Noel. Nilpotence and descent in equivariant stable homotopy theory. Adv. Math., 305:994–1084, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Mathew and V. Stojanoska. The Picard group of topological modular forms via descent theory. Geom. Topol., 20(6):3133–3217, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Meier. United elliptic homology. PhD thesis, University of Bonn, 2012.

    Google Scholar 

  58. F. Muro and O. Raventós. Transfinite Adams representability. Adv. Math., 292:111–180, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Neeman. On a theorem of Brown and Adams. Topology, 36(3):619–645, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Quillen. The spectrum of an equivariant cohomology ring. I, II. Ann. of Math. (2), 94:549–572; ibid. (2) 94 (1971), 573–602, 1971.

    Google Scholar 

  61. D. C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith.

    Google Scholar 

  62. C. Rezk. Notes on the Hopkins-Miller theorem. In Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), volume 220 of Contemp. Math., pages 313–366. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  63. E. Riehl and D. Verity. Homotopy coherent adjunctions and the formal theory of monads. Adv. Math., 286:802–888, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Rognes. Galois extensions of structured ring spectra. Stably dualizable groups. Mem. Amer. Math. Soc., 192(898):viii+137, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Rouquier. Dimensions of triangulated categories. J. K-Theory, 1(2):193–256, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  66. J.-P. Serre. Sur la dimension cohomologique des groupes profinis. Topology, 3:413–420, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Stacks Project Authors. The Stacks Project. Available at http://stacks.math.columbia.edu/.

  68. A. Vistoli. Grothendieck topologies, fibered categories and descent theory. In Fundamental algebraic geometry, volume 123 of Math. Surveys Monogr., pages 1–104. Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  69. E. Yalçin. Set covering and Serre’s theorem on the cohomology algebra of a \(p\)-group. J. Algebra, 245(1):50–67, 2001.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Bhargav Bhatt, Srikanth Iyengar, and Jacob Lurie for helpful discussions. I would especially like to thank my collaborators Niko Naumann and Justin Noel; much of this material is drawn from [54, 55]. Most of all, I would like to thank Mike Hopkins: most of these ideas originated in his work. I am grateful to the referee and to Niko Naumann for several corrections. While this article was written, I was supported by the NSF Graduate Fellowship under grant DGE-114415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mathew, A. (2018). Examples of Descent up to Nilpotence. In: Carlson, J., Iyengar, S., Pevtsova, J. (eds) Geometric and Topological Aspects of the Representation Theory of Finite Groups. PSSW 2016. Springer Proceedings in Mathematics & Statistics, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-319-94033-5_11

Download citation

Publish with us

Policies and ethics