Skip to main content

Bioregenerative Life Support Systems in Space Research

  • Chapter
  • First Online:
Gravitational Biology I

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

For manned long-term missions e.g. to Mars, large amounts of food and oxygen are required to sustain the astronauts during the months- or year-long travel in space but resources are very limited. Water is already routinely recycled on the ISS. In order to solve the problem of limited food and oxygen resources, bioregenerative life support systems are envisioned with closed nutrient and gas loops. Several ecological model systems varying in the degree of complexity have already been investigated on ground and tested on shorter space flights. Photosynthetic organisms such as flagellates or higher plants produce oxygen when light is available. Simultaneously they take up the carbon dioxide exhaled by the astronauts or other consumers. Urea and ammonia can be detoxified by bacteria. Insertion of a component of primary consumers such as ciliates could be used to produce fish for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anken RH, Baur U, Hilbig R (2010) Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci Technol 22:151–154

    Article  Google Scholar 

  • Anken R, Brungs S, Grimm D, Knie M, Hilbig R (2016) Fish inner ear otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci Technol 28:351–356

    Article  CAS  Google Scholar 

  • Barta DJ (2017) Getting out of orbit: water recycling requirements and technology needs for long duration missions away from earth

    Google Scholar 

  • Bluem V, Paris F (2001) Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. biotechnology. Acta Astronaut 48:287–297

    Article  CAS  PubMed  Google Scholar 

  • Blüm V (2003) Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. mini-module. Adv Space Res 31:1683–1691

    Article  PubMed  Google Scholar 

  • Brungs S, Hauslage J, Hilbig R, Hemmersbach R, Anken R (2011) Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv Space Res 48:792–798

    Article  Google Scholar 

  • Cucinotta FA, Kim M-HY, Chappell LJ, Huff JL (2013) How safe is safe enough? Radiation risk for a human mission to Mars. PLoS One 8:e74988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dweik RA, Laskowski D, Abu-Soud HM, Kaneko F, Hutte R, Stuehr DJ, Erzurum SC (1998) Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Investig 101:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulget N, Poughon L, Richalet J, Lasseur C (1999) MELISSA: global control strategy of the artificial ecosystem by using first principles models of the compartments. Adv Space Res 24:397–405

    Article  CAS  PubMed  Google Scholar 

  • Godia F, Albiol J, Montesinos J, Pérez J, Creus N, Cabello F, Mengual X, Montras A, Lasseur C (2002) MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol 99:319–330

    Article  CAS  PubMed  Google Scholar 

  • Gòdia F, Albiol J, Pérez J, Creus N, Cabello F, Montras A, Masot A, Lasseur C (2004) The MELISSA pilotplant facility as an integrated test-bed for advanced life support systems. Adv Space Res 34:1483–1493

    Article  PubMed  Google Scholar 

  • Häder D-P (1994) Real-time tracking of microorganisms. Binary 6:81–86

    Google Scholar 

  • Häder D-P, Kreuzberg K (1990) Algal bioreactor-concept and experiment design. Proceedings of the workshop (DARA/CNES) on artificial ecological systems, 24–26 October 1990, Marseille

    Google Scholar 

  • Häder D-P, Richter PR, Strauch SM, Schuster M (2006) Aquacells – flagellates under long-term microgravity and potential usage for life support systems. Microgravity Sci Technol 18:210–214

    Article  Google Scholar 

  • Hauslage J, Strauch SM, Eßmann O, Haag FWM, Richter P, Krüger J, Julia Stoltze J, Becker I, Adeel Nasir A, Bornemann G, Müller H, Delovski T, Berger T, Rutczynska A, Lebert M (2018) Eu:CROPIS – Euglena combined regenerative organic-food production in space. A compact satellite mission testing biological life support systems under lunar and Martian gravity

    Google Scholar 

  • Hilbig R, Anken R (2017) Impact of micro-and hypergravity on neurovestibular issues of fish. In: Hilbig R, Gollhofer A, Bock O, Manzey D (eds) Sensory motor and behavioral research in space. Springer, Heidelberg, pp 59–86

    Chapter  Google Scholar 

  • Knox JC, Gauto H, Miller LA (2015) Development of a test for evaluation of the hydrothermal stability of sorbents used in closed-loop CO2 removal systems. 45th international conference on environmental systems, 12–16 July 2015. Bellevue, WA

    Google Scholar 

  • Kolvenbach H (2014) Development of an atmosphere management system for bio-regenerative life support systems. RWTH, Aachen

    Google Scholar 

  • Lasseur C, Brunet J, De Weever H, Dixon M, Dussap G, Godia F, Leys N, Mergeay M, Van Der Straeten D (2010) MELISSA: the European project of closed life support system. Gravit Space Res 23:3–12

    Google Scholar 

  • Lebert M, Häder D-P (1998) Aquarack: long-term growth facility for ‘professional’ gravisensing cells. Proceedings of the 2nd European symposium on the utilisation of the international space station, ESTEC, Noordwijk, The Netherlands. 16–18 November 1998 (ESA-SP 433)

    Google Scholar 

  • Lebert M, Porst M, Häder D-P (1995) Long-term culture of Euglena gracilis: an AQUARACK progress report. Proceedings of the 11th C.E.B.A.S. workshops. Annual issue 1995, Ruhr-University of Bochum

    Google Scholar 

  • Li X, Anken RH, Wang G, Hilbig R, Liu Y (2011) Effects of wall vessel rotation on the growth of larval zebrafish inner ear otoliths. Microgravity Sci Technol 23:13–18

    Article  Google Scholar 

  • Li X, Anken R, Liu L, Wang G, Liu Y (2017a) Effects of simulated microgravity on otolith growth of larval zebrafish using a rotating-wall vessel: appropriate rotation speed and fish developmental stage. Microgravity Sci Technol 29:1–8

    Article  CAS  Google Scholar 

  • Li X, Richter PR, Hao Z, An Y, Wang G, Li D, Liu Y, Strauch SM, Schuster M, Haag FW (2017b) Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission. Acta Astronaut 134:17–22

    Article  Google Scholar 

  • Montoye HJ, Washburn R, Servais S, Ertl A, Webster JG, Nagle FJ (1983) Estimation of energy expenditure by a portable accelerometer. Med Sci Sports Exerc 15:403–407

    Article  CAS  PubMed  Google Scholar 

  • Moores JE, Lemmon MT, Rafkin SC, Francis R, Pla-Garcia J, de la Torre Juárez M, Bean K, Kass D, Haberle R, Newman C (2015) Atmospheric movies acquired at the Mars science laboratory landing site: cloud morphology, frequency and significance to the gale crater water cycle and phoenix mission results. Adv Space Res 55:2217–2238

    Article  Google Scholar 

  • Nasir A, Strauch S, Becker I, Sperling A, Schuster M, Richter P, Weißkopf M, Ntefidou M, Daiker V, An Y (2014) The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol 16:113–119

    Article  PubMed  Google Scholar 

  • Porst M, Lebert M, Häder D-P (1996) Long-term culture of Euglena gracilis: an Aquarack progress report. In: Proceedings of the 11th C.E.B.A.S. Workshops. Ruhr-University, Bochum, pp 217–223

    Google Scholar 

  • Porst M, Lebert M, Häder D-P (1997) Long-term cultivation of the flagellate Euglena gracilis. Microgravity Sci Technol 10:166–169

    PubMed  CAS  Google Scholar 

  • Sakano Y, Pickering KD, Strom PF, Kerkhof LJ (2002) Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl Environ Microbiol 68:2285–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyapal S, Filburn T, Trela J, Strange J (2001) Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuel 15:250–255

    Article  CAS  Google Scholar 

  • Strauch S, Schuster M, Lebert M, Richter P, Schmittnagel M, Hader D-P (2008) A closed ecological system in a space experiment. Life in space for life on earth. ESA, Angers

    Google Scholar 

  • Tranquille N, Emeis J, De Chambure D, Binot R, Tamponnet C (1994) Spirulina acceptability trials in rats. A study for the “Melissa” life-support system. Adv Space Res 14:167–170

    Article  CAS  PubMed  Google Scholar 

  • Tri TO, Brown MF, Ewert MK, Foerg SL, McKinley MK (1991) Regenerative life support systems (RLSS) test bed development at NASA-Johnson Space Center, SAE technical paper

    Google Scholar 

  • Wang G, Chen H, Li G, Chen L, Li D, Hu C, Chen K, Liu Y (2006) Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronaut 58:264–269

    Article  Google Scholar 

  • Wheeler RM, Sager JC (2006) Crop production for advanced life support systems. Technical Reports: 1

    Google Scholar 

  • Yang VC, Bartlett RH, Palsson BO, Javanmardian M (1997) Photobioreactors and closed ecological life support systems and artificial lungs containing the same, Google Patents

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Häder, DP., Braun, M., Hemmersbach, R. (2018). Bioregenerative Life Support Systems in Space Research. In: Gravitational Biology I. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3_8

Download citation

Publish with us

Policies and ethics