Skip to main content

Chemical Strengthening of Glass

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

A basic ternary sodium aluminosilicate glass system is described since this simple system forms the basis for glasses readily ion-exchanged to the high surface compressive stress and deep compressive stress layer. The ionic interdiffusion of monovalent alkali ions within an aluminosilicate glass is described and the complementary error function form of the invading ion concentration profile is established. The generation of the stress profile from the concentration gradient is then described mathematically. The basics of fracture mechanics are reviewed and then used to describe the advantages of ion-exchanged glasses, namely imparting high surface strength to allow highly flexible and bendable thin glass sheets and for thicker glass, the retention of strength following deep contact damage. A simple model is described that can accurately predict the retained strength as a function of flaw depth for a known stress profile. The frangibility behavior of ion-exchanged glasses is also described in terms of stored strain energy and cracking responses are shown. The sharp contact failure mode for cover glasses is also described and the use of a Vickers diamond indenter to replicate this type of failure mode is demonstrated. Experimental data show that the resistance to sharp contact strength-limiting flaw generation is improved both with high compressive stress enveloping the deformation region and by utilizing glass compositions that are more resistant to subsurface damage during sharp contact events. Sliding Knoop and Vickers indenter scratch testing shows that ion-exchanged glasses with resistance to subsurface damage do not produce highly visible lateral cracks at loads that readily produce this type of damage in typical ion-exchanged aluminosilicate glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S.S. Kistler: Stresses in glass produced by nonuniform exchange of monovalent ions, J. Am. Ceram. Soc. 45, 59–68 (1962)

    Article  CAS  Google Scholar 

  • M.E. Nordberg, E.L. Mochel, H.M. Garfinkel, J.S. Olcott: Strengthening by ion exchange, J. Am. Ceram. Soc. 47, 215–219 (1964)

    Article  CAS  Google Scholar 

  • J.H. Seaman, P.J. Lezzi, T.A. Blanchet, M. Tomozawa: Degradation of ion-exchange strengthened glasses due to surface stress relaxation, J. Non-Cryst. Solids 403, 113–123 (2014)

    Article  CAS  Google Scholar 

  • E. Gehrke, C. Ullner, M. Hahnert: Fatigue limit and crack arrest in alkali-containing silicate glasses, J. Mater. Sci. 26, 5445–5455 (1991)

    Article  CAS  Google Scholar 

  • C.R. Kurkjian, J.T. Krause, M.J. Matthewson: Strength and fatigue of silica optical fibers, J. Lightwave Technol. 7, 1360–1370 (1989)

    Article  CAS  Google Scholar 

  • A. Makashima, J.D. Mackenzie: Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids 12, 35–45 (1973)

    Article  Google Scholar 

  • A. Makashima, J.D. Mackenzie: Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass, J. Non-Cryst. Solids 17, 147–157 (1975)

    Article  Google Scholar 

  • X. Zuo, H. Toratani: Compositional design of high modulus glasses for disk substrates, J. Non-Cryst. Solids 290, 180–188 (2001)

    Article  Google Scholar 

  • A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Electrochem. 48, 9–23 (1942)

    CAS  Google Scholar 

  • V.Y. Livshits, D.G. Tennison, S.B. Gukasyan, A.K. Kostanyan: Acoustic and elastic properties of glasses in the Na2O-Al2O3-SiO2 system, Sov. J. Glass Phys. Chem. 8, 463–468 (1982)

    Google Scholar 

  • A.J. Burggraaf, J. Cornelissen: Strengthening of glass by ion exchange, Phys. Chem. Glasses 5, 123–129 (1964)

    CAS  Google Scholar 

  • R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Cryst. 32, 751–767 (1976)

    Article  Google Scholar 

  • R.H. Doremus: Exchange and diffusion of ions in glass, J. Phys. Chem. 68, 2212–2218 (1964)

    Article  CAS  Google Scholar 

  • R. Terai: The mixed alkali effect in the Na2O-Cs2O-SiO2 glasses, J. Non-Cryst. Solids 6, 121–135 (1971)

    Article  CAS  Google Scholar 

  • A.K. Varshneya, M.E. Milberg: Ion exchange in sodium borosilicate glasses, J. Am. Ceram. Soc. 57, 165–169 (1974)

    Article  CAS  Google Scholar 

  • A.R. Cooper, D.A. Krohn: Strengthening of glass fibers: II, Ion exchange, J. Am. Ceram. Soc. 52, 665–669 (1969)

    Article  CAS  Google Scholar 

  • A.Y. Sane, A.R. Cooper: Stress buildup and relaxation during ion-exchange strengthening of glass, J. Am. Ceram. Soc. 70, 86–89 (1987)

    Article  CAS  Google Scholar 

  • R.W. Douglas: The rheology of glassy materials – A general survey. In: Amorphous Materials, ed. by R.W. Douglas, B. Ellis (Wiley, London 1972) pp. 3–22

    Google Scholar 

  • M. Tomozawa, R.W. Hepburn: Surface structural relaxation of silica glass: A possible mechanism of mechanical fatigue, J. Non-Cryst. Solids 345, 449–460 (2004)

    Article  CAS  Google Scholar 

  • A. Agarwal, M. Tomozawa: Surface and bulk structural relaxation kinetics of silica glass, J. Non-Cryst. Solids 209, 264–272 (1997)

    Article  CAS  Google Scholar 

  • M. Tomozawa, P.J. Lezzi, R.W. Hepburn, T.A. Blanchet, D. Cherniak: Surface stress relaxation and resulting residual stress in glass fibers: A new mechanical strengthening mechanism of glass, J. Non-Cryst. Solids 358, 2650–2662 (2012)

    Article  CAS  Google Scholar 

  • D.C. Allan, K.W. Koch, R.V. Roussev, R.A. Schaut, V.M. Schneider: Systems and methods for measuring the stress profile of ion-exchanged glass, US Patent (Application), 9140543 (2015), Assigned to Corning Incorporated

    Google Scholar 

  • G.R. Irwin: Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  • G.S. Glaesemann, K. Jakus, J.E. Ritter: Strength variability of indented soda-lime glass, J. Am. Ceram. Soc. 70, 441–444 (1987)

    Article  CAS  Google Scholar 

  • J.B. Wachtman, W.R. Cannon, M.J. Matthewson: Mechanical Properties of Ceramics (Wiley, Hoboken 2009)

    Book  Google Scholar 

  • R.J. Charles: A review of glass strength. In: Progress in Ceramic Science, Vol. 1, ed. by J.E. Burke (Pergamon, New York 1961) pp. 1–38

    Google Scholar 

  • W.B. Hillig: Sources of weakness and the ultimate strength of brittle amorphous solids. In: Modern Aspects of the Vitreous State, ed. by J.D. Makenzie (Butterworth, Washington DC 1962) pp. 152–194

    Google Scholar 

  • T.A. Michalske: The stress corrosion limit: It's measurement and implications. In: Fracture Mechanics of Ceramics, Vol. 5, ed. by R.C. Bradt, A.G. Evans, D.P.H. Hasselmann, F.F. Lange (Plenum, New York 1983) pp. 277–289

    Chapter  Google Scholar 

  • S.T. Gulati, J. Westbrook, S. Carley, H. Vepakomma, T. Ono: Two point bending of thin glass substrate, SID Symp. Dig. Techn. Pap. 45(2), 652–654 (2011)

    Article  Google Scholar 

  • J.D. Makenzie, J. Wakaki: Effects of ion exchange on the Young's modulus of glass, J. Non-Cryst. Solids 38/39, 385–390 (1980)

    Article  Google Scholar 

  • B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, New York 1993)

    Book  Google Scholar 

  • D.C. Allan, X. Guo, G. Hu, G. Peng: Method for achieving a stress profile in a glass, US Patent Application, 14/540328 (2014), Assigned to Corning Incorporated

    Google Scholar 

  • G.D. Quinn, R.C. Bradt: On the Vickers indentation fracture toughness test, J. Am. Ceram. Soc. 90, 673–680 (2007)

    Article  CAS  Google Scholar 

  • D.J. Green: Compressive surface strengthening of brittle materials by a residual stress distribution, J. Am. Ceram. Soc. 66, 807–810 (1983)

    Article  CAS  Google Scholar 

  • S.T. Gulati: Frangibility of tempered soda-lime glass sheet. In: Glass Processing Days: Architectural and Automotive Glass: Now and In the Future, ed. by J. Vitkala (Tamglass Engineering Oy, Tampere 1997) pp. 72–76

    Google Scholar 

  • J.T. Hagan, M.V. Swain: The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D 11, 2091–2102 (1978)

    Article  Google Scholar 

  • A. Arora, D.B. Marshall, B.R. Lawn: Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids 31, 415–428 (1979)

    Article  CAS  Google Scholar 

  • J.T. Hagan: Shear deformation under pyramidal indentations in soda-lime glass, J. Mater. Sci. 15, 1417–1424 (1980)

    Article  CAS  Google Scholar 

  • B.R. Lawn, T.P. Dabbs, C.J. Fairbanks: Kinetics of shear-activated indentation crack initiation in soda-lime glass, J. Mater. Sci. 18, 2785–2797 (1983)

    Article  Google Scholar 

  • K. Hirao, M. Tomozawa: Microhardness of SiO\({}_{2}\) in various environements, J. Am. Ceram. Soc. 70, 497–502 (1987)

    Article  CAS  Google Scholar 

  • K.L. Barefoot, M.J. Dejneka, S. Gomez, T.M. Gross, N. Shashidhar: Crack and scratch resistant glass and enclosures made therefrom, US Patent (Application), 8586492 (2013), Assigned to Corning Incorporated

    Google Scholar 

  • J.D. Mackenzie: High pressure effects on oxide glasses: I, Densification in rigid state, J. Am. Ceram. Soc. 46, 461–476 (1963)

    Article  CAS  Google Scholar 

  • J.E. Neely, J.D. Mackenzie: Hardness and low-temperature deformation of silica glass, J. Mater. Sci. 3, 603–609 (1968)

    Article  CAS  Google Scholar 

  • K.W. Peter: Densification and flow phenomena of glass in indentation experiments, J. Non-Cryst. Solids 5, 103–115 (1970)

    Article  CAS  Google Scholar 

  • J.T. Hagan: Cone cracks around Vickers indentations in fused silica glass, J. Mater. Sci. 14, 462–466 (1979)

    Article  CAS  Google Scholar 

  • S. Yoshida, J.C. Sangleboeuf, T. Rouxel: Qualitative evaluation of indentation-induced densification in glass, J. Mater. Res. 20, 3404–3412 (2005)

    Article  CAS  Google Scholar 

  • T. Rouxel: Driving force for indentation cracking in glass: Composition, pressure, and temperature dependence, Philos. Trans. R. Soc. A 373, 1–26 (2014)

    Google Scholar 

  • G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson's ratio and modern materials, Nat. Mater. 10, 823–837 (2011)

    Article  CAS  Google Scholar 

  • Y. Kato, H. Yamazaki, Y. Kubo, S. Yoshida, J. Matsuoka, T. Akai: Effect of B2O3 content on crack initiation under Vickers indenter test, J. Ceram. Soc. Japan 118, 792–798 (2010)

    Article  CAS  Google Scholar 

  • A.J. Ellison, T.M. Gross: Alkaline earth alumino-borosilicate crack resistant glass, US Patent (Application), 8796165 (2014), Assigned to Corning Incorporated

    Google Scholar 

  • T.M. Gross, R.E. Youngman: Low modulus, damage resistant glass for ultra-thin applications. In: Flexible Glass, ed. by S. Garner (Scrivener, Beverly 2017) pp. 63–83

    Chapter  Google Scholar 

  • A. Zeidler, P.S. Salmon, L.B. Skinner: Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions, Proc. Natl. Acad. Sci. USA 111, 10045–10048 (2014)

    Article  CAS  Google Scholar 

  • J. Wu, J. Deubener, J.F. Stebbins, L. Grygarova, H. Behrens, L. Wondraczek, Y. Yue: Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions, J. Chem. Phys. 131, 104504-1-10 (2009)

    Google Scholar 

  • T.M. Gross: Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, J. Non-Cryst. Solids 358, 358–366 (2012)

    Article  CAS  Google Scholar 

  • V. Le Hourou, J.C. Sangleboeuf, S. Deriano, T. Rouxel, G. Duisit: Sliding indentation fracture of brittle materials: Role of elastic stress fields, Mech. Mater. 29, 143–152 (2003)

    Google Scholar 

  • T.M. Gross: Scratch damage in ion-exchanged alkali aluminosilicate glass: Crack evolution and the dependence of lateral cracking threshold on contact geometry. In: Fractography of Glasses and Ceramics VI, ed. by J.R. Varner, M. Wightman (Wiley, New Jersey 2012) pp. 113–122

    Chapter  Google Scholar 

Download references

Acknowledgements

I would like to thank all colleagues that contributed to the understanding of ion-exchangeable glasses presented in this chapter. In particular, I would like to thank Ben Hanson for providing microprobe data, Doug Allan and Guangli Hu for useful discussions and guidance regarding stress profile generation and fracture mechanics modeling, Kevin Reiman for flaw-depth measurements in abraded ring-on-ring samples, Steve Carley for strain gage measurements, Charlene Smith for providing samples with varying levels of stored strain energy, and Anthony Furstoss for break pattern imaging. The fracture mechanics guidance provided by Scott Glaesemann and Jim Price is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gross, T.M. (2019). Chemical Strengthening of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_8

Download citation

Publish with us

Policies and ethics