Skip to main content

Nonlinear Optical Properties of Glass

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Numerous innovations in photonics have been realized on the basis of nonlinear optical properties, notably in information technologies. To take advantage of the nonlinear optical properties of glass, multidisciplinary research efforts were necessary, combining optics, glass chemistry, material science, as well as development of optical or electrical polarizations processes. This chapter addresses both fundamental aspects of nonlinear optical responses and also the exploitation of nonlinear optical phenomena in glassy material. It starts by a general introduction to nonlinear optical phenomena and concepts. Then, the specific cases of second and third optical responses in glasses are treated separately and described in detail as a function of the corresponding optical phenomena, the various glass families, and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.H. Maiman: Simulated optical radiation in ruby, Nature 187, 493 (1960)

    Article  Google Scholar 

  2. P.P. Franken, A.E. Hill, C.W. Peters, G. Weinreich: Generation of optical harmonics, Phys. Rev. Lett. 7(4), 118 (1961)

    Article  Google Scholar 

  3. P.W.S.S.R. Friberg: Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. 23(12), 2089 (1987)

    Article  Google Scholar 

  4. E.M. Vogel, M.J. Weber, D.M. Krol: Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32(6), 231 (1991)

    CAS  Google Scholar 

  5. H.A. Lorentz: The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat (Teubner, Leipzig 1916)

    Google Scholar 

  6. D.A. Kleinman: Nonlinear dielectric polarization in optical media, Phys. Rev. 126, 1977 (1962)

    Article  CAS  Google Scholar 

  7. P.N. Butcher, D. Cotter: The elements of nonlinear optics. In: Cambridge Studies in Modern Optics, Vol. 9, ed. by P.L. Knight, W.J. Firth (Cambridge University Press, Cambridge 1990)

    Google Scholar 

  8. I. Kang, S. Smolorz, T. Krauss, F. Wise, B.G. Aitken, N.F. Borelli: Time-domain observation of nuclear contributions to the optical nonlinearities of glasses, Phys. Rev. B 54(18), 12641 (1996)

    Article  Google Scholar 

  9. M. Sheik-Bahae, D.J. Hagan, E.W.V. Stryland: Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption, Phys. Rev. Lett. 65(1), 96 (1990)

    Article  CAS  Google Scholar 

  10. J.M. Harbold, F.O. Ilday, F.W. Wise, J.S. Sanghera, V.Q. Nguyen, L.B. Shaw, I.D. Aggarwal: Highly nonlinear As-S-Se glasses for all-optical switching, Opt. Lett. 27(2), 119 (2002)

    Article  CAS  Google Scholar 

  11. H. Nasu, O. Sugimoto, J. Matsuoka, K. Kamiya: Non-resonant-type third-order optical non-linearity of alkali silicate and alkali aluminosilicate glasses — contribution of individual chemical species in the glasses to \({\chi} \)(3), J. Non-Cryst. Solids 182, 321 (1995)

    Article  Google Scholar 

  12. T. Cardinal, E. Fargin, G.L. Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, A. Ducasse, F. Adamietz: Nonlinear optical properties of some niobium(V) oxide glasses, Eur. J. Solid State Inorg. Chem. 33, 597 (1996)

    CAS  Google Scholar 

  13. R.A.H. El-Mallawany (Ed.): Tellurite Glasses Handbook (CRC, Boca Raton 2001)

    Google Scholar 

  14. S. Suehara, P. Thomas, A.P. Mirgorodsky, T. Merle-Méjean, J.C. Champarnaud-Mesjard, T. Aizawa, S. Hishita, S. Todoroki, T. Konishi, S. Inoue: Localized hyperpolarizability approach to the origin of nonlinear optical properties in TeO2-based materials, Phys. Rev. B 70, 205121 (2004)

    Article  CAS  Google Scholar 

  15. A.P. Mirgorodsky, M. Soulis, P. Thomas, T. Merle-Méjean, M. Smirnov: Ab initio study of the nonlinear optical susceptibility of TeO2-based glasses, Phys. Rev. B 73, 134206 (2006)

    Article  CAS  Google Scholar 

  16. M. Dutreilh-Colas, P. Thomas, J.C. Champarnaud-Mesjard, E. Fargin: New TeO2 based glasses for nonlinear optical applications: Study of the Tl2O-TeO2-Bi2O3, Tl2O-TeO2-PbO and Tl2O-TeO2-Ga2O3 systems, Phys. Chem. Glasses 44, 349 (2003)

    CAS  Google Scholar 

  17. E. Fargin, A. Berthereau, T. Cardinal, G.L. Flem, L. Ducasse, L. Canioni, P. Segonds, L. Sarger, A. Ducasse: Optical non-linearity in oxide glasses, J. Non-Cryst. Solids 203, 96 (2003)

    Article  Google Scholar 

  18. B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J.C. Champarnaud, T. Merle, B. Frit, V. Nazabal, E. Fargin, G.L. Flem, M.O. Martin, B. Bousquet, L. Canioni, S.L. Boiteux, P. Segonds, L. Sarger: Glass structure and optical nonlinearities in thallium(I) tellurium(IV) oxide glasses, J. Solid State Chem. 146, 329 (1999)

    Article  CAS  Google Scholar 

  19. O. Noguera, T. Merle-Mejean, A.P. Mirgorodsky, P. Thomas, J.C. Champarnaud-Mesjard: Dynamics and crystal chemistry of tellurites. II. Composition- and temperature-dependence of the Raman spectra of x(Tl2O)+(1-x) Te2O glasses: evidence for a phase separation?, J. Phys. Chem. Solids 65, 981 (2004)

    Article  CAS  Google Scholar 

  20. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa: Raman spectra of MO1/2–TeO2 (M \(=\) Li, Na, K, Rb, Cs and Tl) glasses, J. Non-Cryst. Solids 144, 128 (1992)

    Article  CAS  Google Scholar 

  21. T. Cardinal, K. Richardson, H. Shim, A. Schulte, R. Beatty, K.L. Foulgoc, C. Meneghini, J.F. Viens, A. Villeneuve: Non-linear optical properties of chalcogenide glasses in the system As-S-Se, J. Non-Cryst. Solids 257, 353 (1999)

    Article  Google Scholar 

  22. L. Petit, A. Humeau, N. Carlie, S. Cherukulappurath, G. Boudebs, K. Richardson: Nonlinear optical properties of glasses in the system Ge/Ga—Sb—S/Se, Opt. Lett. 31(10), 1495 (2006)

    Article  CAS  Google Scholar 

  23. N. Finlayson, W.C. Banyai, C.T. Seaton, G.I. Stegeman, M. O'Neill, T.J. Cullen, C.N. Ironside: Optical nonlinearities in CdSxSe1-x-doped glass waveguides, J. Opt. Soc. Am. B 6(4), 675 (1989)

    Article  CAS  Google Scholar 

  24. G. Lenz, J. Zimmermann: Large Kerr effect in bulk Se-based chalcogenide glasses, Opt. Lett. 25(4), 254 (2000)

    Article  CAS  Google Scholar 

  25. R.W. Hellwarth, J. Cherlow, T.-T. Yang: Origin and frequency dependence of nonlinear optical susceptibilities of glasses, Phys. Rev. B 11, 964 (1975)

    Article  CAS  Google Scholar 

  26. S. Smolorz, F. Wise, N.F. Borrelli: Measurement of the nonlinear optical response of optical fiber materials by use of spectrally resolved two-beam coupling, Opt. Lett. 24, 1103 (1999)

    Article  CAS  Google Scholar 

  27. R.H. Stolen, W.J. Tomlinson: Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers, J. Opt. Soc. Am. B 9, 565 (1992)

    Article  CAS  Google Scholar 

  28. S. Santran, L. Canioni, L. Sarger, T. Cardinal, E. Fargin: Precise and absolute measurements of the complex third-order optical susceptibility, J. Opt. Soc. Am. B 21, 2180 (2004)

    Article  CAS  Google Scholar 

  29. S. Montant, A.L. Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802 (1998)

    Article  CAS  Google Scholar 

  30. A. Royon, L. Canioni, B. Bousquet, V. Rodriguez, M. Couzi, C. Rivero, T. Cardinal, E. Fargin, M. Richardson, K. Richardson: Strong nuclear contribution to the optical Kerr effect in niobium oxide containing glasses, Phys. Rev. B 75, 104207 (2007)

    Article  CAS  Google Scholar 

  31. D. Heiman, R.W. Hellwarth, D.S. Hamilton: Raman scattering and nonlinear refractive index measurements of optical glasses, J. Non-Cryst. Solids 34, 63 (1979)

    Article  CAS  Google Scholar 

  32. A.A. Lipovskii, D.K. Tagantsev, A.A. Vetrov, O.V. Yanush: Raman spectroscopy and the origin of electrooptical Kerr phenomenon in niobium alkali-silicate glasses, Opt. Mater. 21, 749 (2003)

    Article  CAS  Google Scholar 

  33. T. Cardinal, E. Fargin, G.L. Flem, S. Leboiteux: Correlations between structural properties of Nb2O5-NaPO3-Na2B4O7 glasses and non-linear optical activities, J. Non-Cryst. Solids 222, 228 (1997)

    CAS  Google Scholar 

  34. C.V. Raman, K.S. Krishnan: A new type of secondary radiation, Nature 121, 501 (1928)

    Article  CAS  Google Scholar 

  35. R.H. Stolen, E.P. Ippen: Raman gain in optical waveguides, Appl. Phys. Lett. 22(6), 276 (1973)

    Article  CAS  Google Scholar 

  36. R. Schafer, J. Jungjohann: Raman amplification – longer wider, faster, cheaper, Compd. Semicond 7(2), 41 (2001)

    Google Scholar 

  37. T.T. Basiev, A.A. Sobol, P.G. Zverev, L.I. Ivleva, V.V. Osiko, R.C. Powell: Raman spectroscopy of crystals for stimulated Raman scattering, Opt. Mater. 11, 307 (1999)

    Article  CAS  Google Scholar 

  38. E.M. Dianov: Advances in Raman fibers, J. Lightwave Technol. 20(8), 1457 (2002)

    Article  CAS  Google Scholar 

  39. F.L. Galeener: J.C.M. Jr., R.H. Geils, W.J. Mosby: The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5, Appl. Phys. Lett. 32(1), 34 (1978)

    Article  CAS  Google Scholar 

  40. M.E. Lines: Absolute Raman intensities in glasses, I. Theory, J. Non-Cryst. Solids 89, 143 (1987)

    Article  CAS  Google Scholar 

  41. M.E. Lines, A.E. Miller, K. Nassau, K.B. Lyons: Absolute Raman intensities in glasses, II. Germania-based heavy metal oxides and global criteria, J. Non-Cryst. Solids 89, 163 (1987)

    Article  CAS  Google Scholar 

  42. A.E. Miller, K. Nassau, K.B. Lyons, M.E. Lines: The intensity of Raman scattering in glasses containing heavy metal oxides, J. Non-Cryst. Solids 99, 289 (1988)

    Article  CAS  Google Scholar 

  43. D. Chang, S.V. Chernikov, M.J. Guy, J.R. Taylor, H.J. Kong: Efficient cascaded Raman generation and signal amplification at 1.3 \({\upmu}\)m in GeO2-doped single mode fibre, Opt. Commun. 142, 289 (1997)

    Article  CAS  Google Scholar 

  44. H.S. Seo, K. Oh: Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration, Opt. Commun. 181, 145 (2000)

    Article  CAS  Google Scholar 

  45. G.A. Thomas, D.A. Ackerman, P.R. Prucnal, S.L. Cooper: Physics in the whirlwind of optical communications, Phys. Today 53, 30–36 (2000)

    Article  CAS  Google Scholar 

  46. J. Bromage, K. Rottwitt, M.E. Lines: A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles, IEEE Photon. Technol. Lett. 14(1), 24 (2002)

    Article  Google Scholar 

  47. E.M. Dianov, M.V. Grekov, I.A. Bufetov, S.A. Vasiliev, O.I. Medvedkov, V.G. Plotnichenko, V.V. Koltashev, A.V. Belov, M.M. Bubnov, S.L. Semjonov, A.M. Prokhorov: CW high power 1.24 \({\upmu}\)m and 1.48 \({\upmu}\)m Raman laser based on low loss phosphosilicate fibre, Electron. Lett. 33(18), 1542 (1997)

    Article  CAS  Google Scholar 

  48. E.M. Dianov, M.V. Grekov, I.A. Bufetov, V.M. Mashinsky, O.D. Sazhin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, V.F. Khopin: Highly efficient 1.3 \({\upmu}\)m Raman fibre amplifier, Electron. Lett. 34(7), 669 (1998)

    Article  Google Scholar 

  49. Z. Pan, S.H. Morgan, B.H. Long: Raman scattering cross-sections and non-linear optical response of lead borate glasses, J. Non-Cryst. Solids 185, 127 (1995)

    Article  CAS  Google Scholar 

  50. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, M. Shimizu: Ultra-wideband tellurite-based Raman fibre amplifier, Electron. Lett. 37(24), 1442 (2001)

    Article  Google Scholar 

  51. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, T. Cardinal: Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica, Opt. Lett. 28, 1126 (2003)

    Article  CAS  Google Scholar 

  52. G. Dai, F. Tassone, A.L. Bassi, V. Russo, C.E. Bottani, F. D'Amore: TeO2-based glasses containing Nb2O5, TiO2, and WO3 for discrete Raman fiber amplification, Photon. Technol. Lett. 16(4), 1011 (2004)

    Article  CAS  Google Scholar 

  53. V.G. Plotnichenko, V.V. Koltashev, V.O. Sokolov, E.M. Dianov, I.A. Grishin, M.F. Churbanov: Raman band intensities of tellurite glasses, Opt. Lett. 30, 1156 (2005)

    Article  CAS  Google Scholar 

  54. R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.-C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13(4), 1144 (2005)

    Article  CAS  Google Scholar 

  55. G.S. Murugan, T. Suzuki, Y. Ohishi: Tellurite glasses for ultrabroadband fiber Raman amplifiers, Appl. Phys. Lett. 86, 161109 (2005)

    Article  CAS  Google Scholar 

  56. C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi: Characterization of the performance parameters of some new broadband glasses for Raman amplification, J. Glass Technol. 46(2), 80 (2005)

    CAS  Google Scholar 

  57. S. Kim, T. Yoko: Nonlinear optical properties of TeO2-based glasses: MOx-TeO2 (M= Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses, J. Am. Ceram. Soc. 78, 1061 (1995)

    Article  CAS  Google Scholar 

  58. C. Rivero, R. Stegeman, K. Richardson, G. Stegeman, G. Turri, M. Bass, P. Thomas, M. Udovic, T. Cardinal, E. Fargin, M. Couzi, H. Jain, A. Miller: Influence of modifier oxides on the structural and optical properties of binary TeO2 glasses, J. Appl. Phys. 101, 023526 (2007)

    Article  CAS  Google Scholar 

  59. V. Rodriguez, G. Guery, M. Dussauze, F. Adamietz, T. Cardinal, K. Richardson: Raman gain in tellurite glass: How combination of IR, Raman, hyper-Raman and hyper-Rayleigh brings new understandings, J. Phys. Chem. C 120(40), 23144 (2016)

    Article  CAS  Google Scholar 

  60. C. Rivero, R. Stegeman, D. Talaga, M. Couzi, T. Cardinal, K. Richardson, G. Stegeman: Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses, Opt. Express 13(12), 4759 (2005)

    Article  CAS  Google Scholar 

  61. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino: Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers, J. Appl. Phys. 77(11), 5518 (1995)

    Article  CAS  Google Scholar 

  62. P.A. Thielen, L.B. Shaw, P.C. Pureza, V.Q. Nguyen, J.S. Sanghera, I.D. Aggarwal: Small-core As-Se fiber for Raman amplification, Opt. Lett. 28(16), 1406 (2003)

    Article  CAS  Google Scholar 

  63. T. Kohoutek, X. Yan, T.W. Shiosaka, S.N. Yannopoulos, A. Chrissanthopoulos, T. Suzuki, Y. Ohishi: Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers, J. Opt. Soc. Am. B 28(9), 2285 (2011)

    Article  CAS  Google Scholar 

  64. R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L.B. Shaw, I.D. Aggarwal: Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B 21(6), 1147 (2004)

    Article  Google Scholar 

  65. I. Savelii, J.C. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, J.M. Dudley, J. Troles, L. Brilland, G. Renversez, F. Smektala: Suspended core tellurite glass optical fibers for infrared supercontinuum generation, Opt. Mater. 33, 1661 (2011)

    Article  CAS  Google Scholar 

  66. R.R. Alfano, S.L. Shapiro: Emission in the region 4000 to 7000 Å via four-photon coupling in glass, Phys. Rev. Lett. 24, 584 (1970)

    Article  CAS  Google Scholar 

  67. R.R. Alfano, S.L. Shapiro: Observation of selfphase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24, 592 (1970)

    Article  CAS  Google Scholar 

  68. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21(19), 1547 (1996)

    Article  CAS  Google Scholar 

  69. J.M. Dudley, G. Genty, S. Coen: Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78(4), 1135 (2006)

    Article  CAS  Google Scholar 

  70. X. Jiang, N.Y. Joly, M.A. Finger, F. Babic, G.K.L. Wong, J.C. Travers, P.S.J. Russell: Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre, Nat. Photonics 9, 133 (2015)

    Article  CAS  Google Scholar 

  71. M. Liao, X. Yan, Z. Duan, T. Suzuki, Y. Ohishi: Tellurite photonic nanostructured fiber, J. Lightwave Technol. 29(7), 1018 (2011)

    Article  CAS  Google Scholar 

  72. M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, T. Suzuki, Y. Ohishi: Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber, Opt. Express 20(26), B574 (2012)

    Article  Google Scholar 

  73. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala: Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers, Opt. Express 20(24), 27083 (2012)

    Article  CAS  Google Scholar 

  74. J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, F. Smektala: Enhanced supercontinuum generation in tapered tellurite suspended core fiber, Opt. Commun. 354, 374 (2015)

    Article  CAS  Google Scholar 

  75. P.P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto: Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16, 7161 (2008)

    Article  CAS  Google Scholar 

  76. U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang: Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express 23(3), 3282 (2015)

    Article  CAS  Google Scholar 

  77. M. Boivin, M. El-Amraoui, Y. Ledemi, S. Morency, R. Vallee, Y. Messaddeq: Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications, Opt. Mater. Express 4(8), 1740 (2014)

    Article  CAS  Google Scholar 

  78. C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang: Mid-infrared supercontinuum covering the 1.4–13.3 \({\upmu}\)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics 8, 830 (2014)

    Article  CAS  Google Scholar 

  79. V.N. Denisov, B.N. Mavrin, V.B. Podobedov: Hyper-Raman scattering by vibrational excitation in crystals, glasses and liquids, Phys. Rep. 151(1), 1 (1987)

    Article  Google Scholar 

  80. V. Rodriguez: New structural and vibrational opportunities combining Hyper-Rayleigh/hyper-Raman and Raman scattering in isotropic materials, J. Raman Spectrosc. 43(5), 627 (2012)

    Article  CAS  Google Scholar 

  81. P. Guyot-Sionnest, Y.R. Shen: Bulk contribution in surface second-harmonic generation, Phys. Rev. B 38(12), 7985 (1988)

    Article  CAS  Google Scholar 

  82. X. Wang, S. Fardad, S. Das, A. Salandrino, R. Hui: Polarization-based identification of bulk contributions in surface nonlinear optics, Phys. Rev. B 93, 161109 (2016)

    Article  CAS  Google Scholar 

  83. F.J. Rodríguez, F.X. Wang, B.K. Canfield, S. Cattaneo, M. Kauranen: Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass, Opt. Express 15(14), 8695 (2007)

    Article  Google Scholar 

  84. Y. Sasaki, Y. Ohmori: Phase-matched sum-frequency light generation in optical fibers, Appl. Phys. Lett. 39(6), 466 (1981)

    Article  CAS  Google Scholar 

  85. R.A. Myers, N. Mukherjee, S.R.J. Brueck: Large second-order nonlinearity in poled fused silica, Opt. Lett. 16(22), 1732 (1991)

    Article  CAS  Google Scholar 

  86. A. Okada, K. Ishii, K. Mito, K. Sasaki: Phase-matched second-harmonic generation in novel corona poled glass waveguides, Appl. Phys. Lett. 60, 2853 (1992)

    Article  CAS  Google Scholar 

  87. P.G. Kazansky, A. Kamal, P.S. Russell: High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation, Opt. Lett. 18, 683 (1993)

    Google Scholar 

  88. L.J. Henry, B.V. McGrath, T.G. Alley, J.J. Kester: Optical nonlinearity in fused silica by proton implantation, J. Opt. Soc. Am. B 13, 827 (1996)

    Article  CAS  Google Scholar 

  89. U. Österberg, W. Margulis: Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber, Opt. Lett. 11(8), 516 (1986)

    Article  Google Scholar 

  90. R.H. Stolen, H.W.K. Tom: Self-organized phase-matched harmonic generation in optical fibers, Opt. Lett. 12, 585 (1987)

    Article  CAS  Google Scholar 

  91. F. Ouellette, K.O. Hill, D.C. Johnson: Light-induced erasure of self-organized \({\chi}\)(2) gratings in optical fibers, Opt. Lett. 13(6), 515 (1988)

    Article  CAS  Google Scholar 

  92. V. Mizrahi, Y. Hibino, G. Stegeman: Polarization study of photoinduced second-harmonic generation in glass optical fibers, Opt. Commun. 78, 283 (1990)

    Article  CAS  Google Scholar 

  93. T.J. Driscoll, N.M. Lawandy: Optically encoded second-harmonic generation in bulk silica-based glasses, J. Opt. Soc. Am. B 11(2), 355 (1994)

    Article  CAS  Google Scholar 

  94. W. Margulis, F. Laurell, B. Lesche: Imaging the non linear grating in frequency doubling fibres, Nature 378(14), 699 (1995)

    Article  CAS  Google Scholar 

  95. J.H. Kyung, N.M. Lawandy: Direct measurement of photoinduced charge distribution responsible for second-harmonic generation in glasses, Opt. Lett. 21(3), 186 (1996)

    Article  CAS  Google Scholar 

  96. T. Komatsu: Design and control of crystallization in oxide glasses, J. Non-Cryst. Solids 428, 156 (2015)

    Article  CAS  Google Scholar 

  97. X. He, C. Fan, B. Poumellec, Q. Liu, H. Zeng, F. Brisset, G. Chen, X. Zhao, M. Lancry: Size-controlled oriented crystallization in SiO2-based glasses by femtosecond laser irradiation, J. Opt. Soc. Am. B 31, 376 (2014)

    Article  CAS  Google Scholar 

  98. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, R. Kashyap: Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3-D integrated optics, Sci. Rep. 5, 10391 (2015)

    Article  CAS  Google Scholar 

  99. J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, M. Lancry: Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: Variation with writing speed and pulse energy, World J. Nano Sci. Eng. 5, 96 (2015)

    Article  CAS  Google Scholar 

  100. M.B.J. Choi, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, M. Richardson: Three dimensional direct femtosecond laser writing of second-order nonlinearities in glass, Opt. Lett. 37, 1029 (2012)

    Article  CAS  Google Scholar 

  101. G. Papon, N. Marquestaut, Y. Petit, A. Royon, M. Dussauze, V. Rodriguez, T. Cardinal, L. Canioni: Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass, J. Appl. Phys. 115(11), 113103 (2014)

    Article  CAS  Google Scholar 

  102. G. Papon, Y. Petit, N. Marquestaut, A. Royon, M. Dussauze, V. Rodriguez, T. Cardinal, L. Canioni: Fluorescence and second-harmonic generation correlative microscopy to probe space charge separation and silver cluster stabilization during direct laser writing in a tailored silver containing glass, Opt. Mater. Express 3(11), 1855 (2013)

    Article  CAS  Google Scholar 

  103. N. Mukherjee, R.A. Myers, S.R.J. Brueck: Dynamics of second-harmonic generation in fused silica, J. Opt. Soc. Am. B 11, 665 (1994)

    Article  CAS  Google Scholar 

  104. P.G. Kazansky, P.S.J. Russel: Thermally poled glass: Frozen-in electric field or oriented dipoles?, Opt. Commun. 110, 611 (1994)

    Article  Google Scholar 

  105. T.G. Alley, S.R.J. Brueck, M. Wiedenbeck: Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica, J. Appl. Phys. 86(12), 6634 (1999)

    Article  CAS  Google Scholar 

  106. A.L.C. Triques, I.C.S. Caralho, M.F. Moreira, H.R. Carvalho, R. Fischer, B. Lesche, W. Margullis: Time evolution of depletion region in poled silica, Appl. Phys. Lett. 82(18), 2948 (2003)

    Article  CAS  Google Scholar 

  107. F.S.V. Pruneri, G. Bonfrate, P.G. Kazansky, G.M. Yang: Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation, Appl. Phys. Lett. 74(17), 2423 (1999)

    Article  CAS  Google Scholar 

  108. J. Xu, X. Lu, H. Chen, L. Liu, W. Wang, C. Zhu, F. Gan: Second harmonic generation investigation on electric poling effects in fused silica, Opt. Mater. 8, 243 (1997)

    Article  CAS  Google Scholar 

  109. E.S.Q. Mingxin, H. Keiichi, M. Toru: The thickness evolution of the second-order nonlinear layer in thermally poled fused silica, Opt. Commun. 189, 161 (2001)

    Article  Google Scholar 

  110. D. Faccio, V. Pruneri, P.G. Kazansky: Dynamics of the second-order nonlinearity in thermally poled silica glass, Appl. Phys. Lett. 79(17), 2687 (2001)

    Article  CAS  Google Scholar 

  111. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli: Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution, Appl. Phys. Lett. 83(17), 3623 (2003)

    Article  CAS  Google Scholar 

  112. Y. Quiquempois, N. Godbout, S. Lacroix: Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity, Phys. Rev. A 65(4), 043816 (2002)

    Article  CAS  Google Scholar 

  113. T.M. Proctor, P.M. Sutton: Static space-charge distributions with a single mobile charge carrier, J. Chem. Phys. 30(1), 212 (1959)

    Article  CAS  Google Scholar 

  114. G.M.Y. Quiquempois, P. Dutherage, P. Bernage, P. Niay, M. Douay: Localisation of the induced second-order non-linearity within infrasil and suprasil thermally poled glasses, Opt. Comm. 176, 479 (2000)

    Article  CAS  Google Scholar 

  115. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3(4), 309 (2012)

    Article  CAS  Google Scholar 

  116. S.H.-Y. Chen, Y.-H. Yang, Z.-W. Wang, C. T'sung Shih, H. Niu: Quasi-phase-matched second-harmonic generation in ge-ion implanted fused silica channel waveguide, Opt. Express 13, 7091 (2005)

    Article  Google Scholar 

  117. K.A.W.G. Li, A.A. Said, M. Dugan, P. Bado: Quasi-phase matched second-harmonic generation through thermal poling in femtosecond laser-written glass waveguides, Opt. Express 17, 9442 (2009)

    Article  CAS  Google Scholar 

  118. R.J.J. Fage-Pedersen, M. Kristensen: Planar glass devices for efficient periodic poling, Opt. Express 13, 8514 (2005)

    Article  CAS  Google Scholar 

  119. R.J.J. Fage-Pedersen, M. Kristensen: Poled-glass devices: Influence of surfaces and interfaces, J. Opt. Soc. Am. B 24, 1075 (2007)

    Article  CAS  Google Scholar 

  120. V. Pruneri, G. Bonfrate, P.G. Kazansky, D.J. Richardson, N.G. Broderick, J.P. de Sandro, C. Simonneau, P. Vidakovic, J.A. Levenson: Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers, Opt. Lett. 24, 208 (1999)

    Article  CAS  Google Scholar 

  121. A. Strauß, U. Jauernig, V. Reichel, H. Bartelt: Generation of green light in a thermally poled silica fiber by quasi-phase-matched second harmonic generation, Optik–Int. J. Light Electron. Opt. 121(5), 490 (2010)

    Article  CAS  Google Scholar 

  122. M. Fokine, L.E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, W. Margulis: Integrated fiber Mach–Zehnder interferometer for electro-optic switching, Opt. Lett. 27, 1643 (2002)

    Article  CAS  Google Scholar 

  123. N. Myren, W. Margulis: All-fiber electrooptical mode-locking and tuning, IEEE Photonics Technol. Lett. 17, 2047 (2005)

    Article  Google Scholar 

  124. H. An, S. Fleming: Investigating the effectiveness of thermally poling optical fibers with various internal electrode configurations, Opt. Express 20(7), 7436 (2012)

    Article  Google Scholar 

  125. W. Margulis, O. Tarasenko, N. Myren: Who needs a cathode? creating a second-order nonlinearity by charging glass fiber with two anodes, Opt. Express 17, 15534 (2009)

    Article  CAS  Google Scholar 

  126. J. Zhang, L. Qian: Real-time \({\chi}\)(2) evolution in twin-hole fiber during thermal poling and repoling, J. Opt. Soc. Am. B 26(7), 1412 (2009)

    Article  CAS  Google Scholar 

  127. A. Camara, O. Tarasenko, W. Margulis: Study of thermally poled fibers with a two-dimensional model, Opt. Express 22(15), 17700 (2014)

    Article  CAS  Google Scholar 

  128. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, O. Tarasenko: High-speed electrical switching in optical fibers, Appl. Opt. 50(25), E65 (2011)

    Article  CAS  Google Scholar 

  129. D.E. Carlson, K.W. Hang, G.F. Stockdale: Electrode “polarization” in alkali-containing glasses, J. Am. Ceram. Soc. 55, 337 (1972)

    Article  CAS  Google Scholar 

  130. D.E. Carlson: Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses, J. Am. Ceram. Soc. 57, 291 (1974)

    Article  CAS  Google Scholar 

  131. D.E. Carlson, K.W. Hang, G.F. Stockdale: Ion depletion of glass at a blocking anode: II, Properties of ion-depleted glasses, J. Am. Ceram. Soc. 57, 295 (1974)

    Article  CAS  Google Scholar 

  132. D.E. Carlson: Anodic proton injection in glasses, J. Am. Ceram. Soc. 57, 461 (1974)

    Article  CAS  Google Scholar 

  133. F.C. Garcia, I.C.S. Carvalho, E. Hering, W. Margulis, B. Lesche: Inducing a large second-order optical nonlinearity in soft glasses by poling, Appl. Phys. Lett. 72, 3252 (1998)

    Article  CAS  Google Scholar 

  134. H. An, S. Fleming: Near-anode phase separation in thermally poled soda lime glass, Appl. Phys. Lett. 88(18), 181106 (2006)

    Article  CAS  Google Scholar 

  135. H. An, S. Fleming: Second-order optical nonlinearity in thermally poled borosilicate glass, Appl. Phys. Lett. 89(18), 181111 (2006)

    Article  CAS  Google Scholar 

  136. A. Malakho, M. Dussauze, E. Fargin, O. Bidault, V. Rodriguez, F. Adamietz, B. Poumellec: Effect of sodium to barium substitution on the space charge implementation in thermally poled glasses for nonlinear optical applications, J. Solid State Chem. 182(5), 1156 (2009)

    Article  CAS  Google Scholar 

  137. P. Thamboon, D.M. Krol: Second-order optical nonlinearities in thermally poled phosphate glasses, J. Appl. Phys. 93(1), 32 (2003)

    Article  CAS  Google Scholar 

  138. G. Guimbretière, M. Dussauze, V. Rodriguez, E.I. Kamitsos: Correlation between second-order optical response and structure in thermally poled sodium niobium-germanate glass, Appl. Phys. Lett. 97(17), 171103 (2010)

    Article  CAS  Google Scholar 

  139. M. Dussauze, V. Rodriguez, L. Velli, C.P.E. Varsamis, E.I. Kamitsos: Polarization mechanisms and structural rearrangements in thermally poled sodium-alumino phosphate glasses, J. Appl. Phys. 107(4), 043505 (2010)

    Article  CAS  Google Scholar 

  140. C.R. Mariappan, B. Roling: Mechanism and kinetics of Na+ ion depletion under the anode during electro-thermal poling of a bioactive glass, J. Non-Cryst. Solids 356(11–17), 720 (2010)

    Article  CAS  Google Scholar 

  141. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, F. Adamietz: Large second-harmonic generation of thermally poled sodium borophosphate glasses, Opt. Express 13, 4064 (2005)

    Article  CAS  Google Scholar 

  142. M. Dussauze, E.I. Kamitsos, E. Fargin, V. Rodriguez: Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium-niobium borophosphate glasses, J. Phys. Chem. C(111), 14560 (2007)

    Google Scholar 

  143. E.C. Ziemath, V.D. Araújo, C.A. Escanhoela: Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass, J. Appl. Phys. 104(5), 054912 (2008)

    Article  CAS  Google Scholar 

  144. D. Moncke, M. Dussauze, E.I. Kamitsos, C.P.E. Varsamis: Thermal poling induced structural changes in sodium borosilicate glasses, Phys. Chem. Glasses 50(3), 229 (2009)

    CAS  Google Scholar 

  145. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, E.I. Kamitsos: How does thermal poling affect the structure of soda-lime glass?, J. Phys. Chem. C(114), 12754 (2010)

    Google Scholar 

  146. M. Fabbriz, J.R. Senna: Models of ionic transport for silicon-glass anodic bonding, J. Electrochem. Soc. 155, G274 (2008)

    Article  CAS  Google Scholar 

  147. P. Nitzsche, K. Lange, B. Schmidt, S. Grigull, U. Kreissig, B. Thomas, K. Herzog: Ion drift processes in pyrex-type alkali-borosilicate glass during anodic bonding, J. Electrochem. Soc. 145, 1755 (1998)

    Article  CAS  Google Scholar 

  148. B.S.B. Schmidt, P. Nitzsche, K. Lange, S. Grigull, U. Kreissig, B. Thomas, K. Herzog: In situ investigation of ion drift processes in glass during anodic bonding, Sens. Actuators A 67, 191 (1998)

    Article  CAS  Google Scholar 

  149. U.K. Krieger, W.A. Lanford: Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: Experimental, J. Non-Cryst. Solids 102, 50 (1988)

    Article  CAS  Google Scholar 

  150. C. Corbari, L.C. Ajitdoss, I.C.S. Carvalho, O. Deparis, F.P. Mezzapesa, P.G. Kazansky, K. Sakaguchi: The problem of achieving high second-order nonlinearities in glasses: The role of electronic conductivity in poling of high index glasses, J. Non-Cryst. Solids 356(50/51), 2742 (2010)

    Article  CAS  Google Scholar 

  151. J. Zakel, M. Balabajew, B. Roling: On the mechanism of field-induced mixed ionic–electronic transport during electro-thermal poling of a bioactive sodium–calcium phosphosilicate glass, Solid State Ion 265, 1 (2014)

    Article  CAS  Google Scholar 

  152. C. McLaren, M. Balabajew, M. Gellert, B. Roling, H. Jain: Depletion layer formation in alkali silicate glasses by electro-thermal poling, J. Electrochem. Soc. 163(9), H809 (2016)

    Article  CAS  Google Scholar 

  153. T. Cremoux, M. Dussauze, E. Fargin, T. Cardinal, D. Talaga, F. Adamietz, V. Rodriguez: Trapped molecular and ionic species in poled borosilicate glasses: Toward a rationalized description of thermal poling in glasses, J. Phys. Chem. C 118(7), 3716 (2014)

    Article  CAS  Google Scholar 

  154. A.V. Redkov, V.G. Melehin, A.A. Lipovskii: How does thermal poling produce interstitial molecular oxygen in silicate glasses?, J. Phys. Chem. C 119(30), 17298 (2015)

    Article  CAS  Google Scholar 

  155. T. Suzuki, J. Anzai, Y. Takimoto, K. Uraji, K. Yamamoto, J. Nishii: Migration behavior of network-modifier cations at glass surface during electrical poling, J. Non-Cryst. Solids 452, 125 (2016)

    Article  CAS  Google Scholar 

  156. H. Takagi: S.-i. Miyazawa, M. Takahashi, R. Maeda: Electrostatic imprint process for glass, Appl. Phys. Express 1, 024003 (2008)

    Article  CAS  Google Scholar 

  157. P. Brunkov, V. Goncharov, V. Melehin, A. Lipovskii, M. Petrov: Submicron surface relief formation using thermal poling of glasses, E-J. Surf. Sci. Nanotechnol. 7, 617 (2009)

    Article  CAS  Google Scholar 

  158. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, H. Graener: Metallodielectric two-dimensional photonic structures made by electric-field microstructuring of nanocomposite glasses, Adv. Mater. 17(24), 2983 (2005)

    Article  CAS  Google Scholar 

  159. A.A. Lipovskii, V.V. Rusan, D.K. Tagantsev: Imprinting phase/amplitude patterns in glasses with thermal poling, Solid State Ion. 181(17/18), 849 (2010)

    Article  CAS  Google Scholar 

  160. A.V. Redkov, V.V. Zhurikhina, A.A. Lipovskii: Formation and self-arrangement of silver nanoparticles in glass via annealing in hydrogen: the model, J. Non-Cryst. Solids 376, 152 (2013)

    Article  CAS  Google Scholar 

  161. A.N. Kamenskii, I.V. Reduto, V.D. Petrikov, A.A. Lipovskii: Effective diffraction gratings via acidic etching of thermally poled glass, Opt. Mater. 62, 250 (2016)

    Article  CAS  Google Scholar 

  162. L.A.H. Fleming, D.M. Goldie, A. Abdolvand: Imprinting of glass, Opt. Mater. Express 5(8), 1674 (2015)

    Article  CAS  Google Scholar 

  163. P.N. Brunkov, V.G. Melekhin, V.V. Goncharov, A.A. Lipovskii, M.I. Petrov: Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites, Techn. Phys. Lett. 34(12), 1030 (2008)

    Article  CAS  Google Scholar 

  164. G. Yang, M. Dussauze, V. Rodriguez, F. Adamietz, N. Marquestaut, K.L.N. Deepak, D. Grojo, O. Uteza, P. Delaporte, T. Cardinal, E. Fargin: Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling, J. Appl. Phys. 118(4), 043105 (2015)

    Article  CAS  Google Scholar 

  165. V.R.M. Dussauze, F. Adamietz, G. Yang, F. Bondu, A. Lepicard, M. Chafer, T. Cardinal, E. Fargin: Accurate second harmonic generation microimprinting in glassy oxide materials, Adv. Opt. Mater. 4(6), 929 (2016)

    Article  CAS  Google Scholar 

  166. K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, A. Lipovskii: Spatially periodical poling of silica glass, J. Appl. Phys. 111(10), 104307 (2012)

    Article  CAS  Google Scholar 

  167. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, K. Kamiya: 3rd-harmonic generation from some chalcogenide glasses, J. Am. Ceram. Soc. 73(6), 1794 (1990)

    Article  CAS  Google Scholar 

  168. M. Asobe, T. Kanamori, K. Kubodera: Ultrafast all-optical switching using highly nonlinear chalcogenide glass-fiber, IEEE Photonics Technol. Lett. 4(4), 362 (1992)

    Article  Google Scholar 

  169. F. Smektala, C. Quemard: Chalcogenide glasses with large non-linear refractive indices, J. Non-Cryst. Solids 239(1–3), 139 (1998)

    Article  CAS  Google Scholar 

  170. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata: Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching, Opt. Lett. 29(3), 265 (2004)

    Article  CAS  Google Scholar 

  171. D.I. Yeom, E.C. Maegi, M.R.E. Lamont, M.A.F. Roelens, L. Fu, B.J. Eggleton: Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires, Opt. Lett. 33(7), 660 (2008)

    Article  CAS  Google Scholar 

  172. M. Guignard, V. Nazabal, F. Smektala, J.L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, Y. Quiquempois: Chalcogenide glasses based on germanium disulfide for second harmonic generation, Adv. Funct. Mater. 17(16), 3284 (2007)

    Article  CAS  Google Scholar 

  173. W. Liu, Q.M. Zhang, L. Liu, L. Xu, Y. Xu, G. Chen: Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light, Opt. Commun. 282(10), 2081 (2009)

    Article  CAS  Google Scholar 

  174. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, Y. Tsujiie: Second-harmonic generation in thermally poled chalcohalide glass, Opt. Lett. 31(23), 3492 (2006)

    Article  Google Scholar 

  175. G. Dong, H. Tao, X. Xiao, C. Lin, X. Zhao, S. Mao: Mechanism of electron beam poled SHG in 0.95GeS\({}_{2}\cdot\)0.05In2S3 chalcogenide glasses, J. Phys. Chem. Solids 68(2), 158 (2007)

    Article  CAS  Google Scholar 

  176. H. Zeghlache, M. Guignard, A. Kudlinski, Y. Quiquempois, G. Martinelli, V. Nazabal, F. Smektala: Stabilization of the second-order susceptibility induced in a sulfide chalcogenide glass by thermal poling, J. Appl. Phys. 101(8), 084905 (2007)

    Article  CAS  Google Scholar 

  177. S. Gu, Z. Ma, H. Tao, C. Lin, H. Hu, X. Zhao, Y. Gong: Second-harmonic generation in the thermal/electrical poling (100-x)GeS2\({\cdot}\)x(0.5Ga 2S3\({\cdot}\)0.5CdS) chalcogenide glasses, J. Phys. Chem. Solids 69(1), 97 (2008)

    Article  CAS  Google Scholar 

  178. Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G.S. Stegeman: Lacroix: Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films, Electron. Lett. 36(8), 733 (2000)

    Article  CAS  Google Scholar 

  179. W.T. Shoulders, J. Novak, M. Dussauze, J.D. Musgraves, K. Richardson: Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses, Opt. Mater. Express 3(6), 700 (2013)

    Article  CAS  Google Scholar 

  180. M. Dussauze, X. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, F. Smektala: Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses, Opt. Mater. Express 2(1), 45 (2012)

    Article  CAS  Google Scholar 

  181. K. Shimakawa, S. Inami, S.R. Elliott: Reversible photoinduced change of photoconductivity in amorphous chalcogenide films, Phys. Rev. B 42(18), 11857 (1990)

    Article  CAS  Google Scholar 

  182. K. Shimakawa, S. Inami, T. Kato, S.R. Elliott: Origin of photoinduced metastable defects in amorphous chalcogenides, Phys. Rev. B 46(16), 10062 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge P. Canioni and Dr. Royon for their help to setup this chapter. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the futureProgramme IdEx Bordeaux—LAPHIA (ANR-10-IDEX-03-02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dussauze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Dussauze, M., Cardinal, T. (2019). Nonlinear Optical Properties of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_6

Download citation

Publish with us

Policies and ethics