Skip to main content

Glasses and Glass-Ceramics for Solid-State Battery Applications

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter reviews investigations carried out in the last decades to synthesize and characterize ion conducting glasses and glass-ceramics and further use them as solid electrolytes in all-solid-state batteries.

First, the focus is put on materials, either \(\mathrm{Li^{+}}\), \(\mathrm{Na^{+}}\) or \(\mathrm{Ag^{+}}\) conducting ones, with the most striking points being the discovery of ion conducting chalcogenide glasses in the 1980s, the elaboration of fast ion conducting glass-ceramics with the introduction of mechanical alloying techniques in the 1990s, and more recently the renewed interest in \(\mathrm{Na^{+}}\) conducting glasses and glass-ceramics.

The second part of the chapter focuses on the development of all-solid-state batteries, Li-ion and Li\(/\)S batteries and to a lesser extent \(\mathrm{Na^{+}}\) and \(\mathrm{Ag^{+}}\)-ion batteries. It is shown that the performance of the batteries relies on the development of optimized composite electrodes comprising the electrolyte, an active material and a conductive additive. The review sheds light on the key parameters that have to be considered, including the choice of compositions of active material and conductive additive, coating of electrode by the electrolyte, coating of the electrolyte, ratio of the components, homogenization of the mixture and compaction of the powders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NEDO: Roadmap for the development of battery technology for next generation vehicles (2008), http://app3.infoc.nedo.go.jp/informations/koubo/other/FA/nedoothernews.2009-05-29.2374124845/30ed30fc30de30c389e38aacP_516c958b7248518d65398a027248_.pdf

  2. K. Takada, N. Aotani, K. Iwamoto, S. Kondo: Solid state lithium battery with oxysulfide glass, Solid State Ion 86–88, 877 (1996)

    Article  Google Scholar 

  3. R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2) xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140, 83 (2001)

    Article  CAS  Google Scholar 

  4. N. Machida, H. Maeda, H. Peng, T. Shigematsu: All-solid-state lithium battery with LiCo0.3Ni0.7O2 fine powder as cathode materials with an amorphous sulfide electrolyte, J. Electrochem. Soc. 149, A688 (2002)

    Article  CAS  Google Scholar 

  5. J.-M. Tarascon, M. Armand: Issues and challenges facing rechargeable lithium batteries, Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  6. Y. Nishi: Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100, 101–106 (2001)

    Article  CAS  Google Scholar 

  7. M. Armand, J.-M. Tarascon: Building better batteries, Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  8. W. Li, J.R. Dahn, D.S. Wainwright: Rechargeable lithium batteries with aqueous electrolytes, Science 264, 1115–1118 (1994)

    Article  CAS  Google Scholar 

  9. T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohgiya, I. Tanaka (Eds.): Solid State Ionics for Batteries (Springer, Tokyo 2005)

    Google Scholar 

  10. K. Kariatsumari: Toyota announces 4-layer all-solid-state battery, http://techon.nikkeibp.co.jp/english/NEWS_EN/20101122/187553/ (2010)

  11. Toyota: Key technologies for electric motorization—Promoting familiarity of electric-powered vehicles, http://www.toyota-global.com/innovation/environmental_technology/keytech/ (2017)

  12. M. Luleva: Toyota's new all-solid-state battery: The power of “green vehicles”, https://www.greenoptimistic.com/toyotas-new-all-solid-state-battery-the-power-of-green-vehicles-20120927/#.WfhN1dXiapo (2012)

  13. Reuters: Toyota set to sell long-range, fast-charging electric cars in 2022: Paper, https://www.reuters.com/article/us-toyota-electric-cars/toyota-set-to-sell-long-range-fast-charging-electric-cars-in-2022-paper-idUSKBN1AA035 (2017)

  14. B. Schmitt: Ultrafast-charging solid-state EV batteries around the corner, Toyota confirms, https://www.forbes.com/sites/bertelschmitt/2017/07/25/ultrafast-charging-solid-state-ev-batteries-around-the-corner-toyota-confirms/2/#3e92b11c69ea (2017)

  15. M. Tisshaw: BMW readies radical battery technology for 2026 launch, https://www.autocar.co.uk/car-news/industry/bmw-readies-radical-battery-technology-2026-launch (2017)

  16. E. Treacy: Electric vehicle boom: ICE-ing the combustion engine, Comment of the day, http://www.fullertreacymoney.com/general/electric-vehicle-boom-ice-ing-the-combustion-engine-/ (2017)

  17. J. Cao, R. He, T. Kyu: Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries, Curr. Opin. Chem. Eng. 15, 68–75 (2017)

    Article  Google Scholar 

  18. J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park: A review of lithium and non-lithium based solid state batteries, J. Power Sources 282, 299–322 (2015)

    Article  CAS  Google Scholar 

  19. N.J. Dudney, W.C. West, J. Nanda (Eds.): Handbook of Solid State Batteries, 2nd edn. (World Scientific, Singapore 2015) p. 836

    Google Scholar 

  20. C. Julien, G.A. Nazri: Solid State Batteries: Materials Design and Optimization (Kluwer Academic, Boston 1994) p. 629

    Book  Google Scholar 

  21. K. Takada: Progress and prospective of solid-state lithium batteries, Acta Mater. 61, 759–770 (2013)

    Article  CAS  Google Scholar 

  22. Y. Kato, K. Kawamoto, R. Kanno, M. Hirayama: Discharge performance of all-solid-state battery using a lithium superionic conductor Li10GeP2S12, Electrochemistry 80, 749–751 (2012)

    Article  CAS  Google Scholar 

  23. J.W. Fergus: Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources 195, 4554–4569 (2010)

    Article  CAS  Google Scholar 

  24. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Matsui: A lithium superionic conductor, Nat. Mater. 10, 682–686 (2011)

    Article  CAS  Google Scholar 

  25. Y. Yoon, C. Park, J. Kim, D. Shin: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries, J. Power Sources 226, 186–190 (2013)

    Article  CAS  Google Scholar 

  26. M. Thackery, C. Wolverton, E.D. Isaacs: Electrical energy storage for transportation---approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5, 7854–7863 (2012)

    Article  CAS  Google Scholar 

  27. N. Yabuuchi, T. Ohzuku: Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources 119–121, 171 (2003)

    Article  CAS  Google Scholar 

  28. R.J. Gummow, A. de Kock, M.M. Thackeray: Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ion. 69, 59 (1994)

    Article  CAS  Google Scholar 

  29. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  CAS  Google Scholar 

  30. C. Liu, Z.G. Neale, G. Cao: Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today 19, 109–123 (2016)

    Article  CAS  Google Scholar 

  31. J.B. Goodenough, K.-S. Park: The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167–1176 (2013)

    Article  CAS  Google Scholar 

  32. V. Thangadurai, W. Weppner: Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12, 81–92 (2006)

    Article  CAS  Google Scholar 

  33. R.C. Agrawal, G.P. Pandey: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D 41, 1–18 (2008)

    Article  CAS  Google Scholar 

  34. H. Park, T. Yoon, J. Mun, J.H. Ryu, J.J. Kim, S.M. Oh: A comparative study on thermal stability of two solid electrolyte interphase (SEI) films on graphite negative electrode, J. Electrochem. Soc. 160, A1539–A1543 (2013)

    Article  CAS  Google Scholar 

  35. R.A. Huggins: Simple method to determine electronic and ionic components of the conductivity in mixed conductors: A review, Ionics 8(3/4), 300–313 (2002)

    Article  CAS  Google Scholar 

  36. J.B. Wagner, C. Wagner: Electrical conductivity measurements on cuprous halides, J. Chem. Phys. 26, 1597–1601 (1957)

    Article  CAS  Google Scholar 

  37. I. Riess: Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors, Solid State Ion. 91(3/4), 221–232 (1996)

    Article  CAS  Google Scholar 

  38. E. Robinel, A. Kone, M.J. Duclot, J.L. Souquet: Silver sulfide based glasses: (II). Electrochemical properties of GeS2-Ag2S-Agl glasses: Transference number measurement and redox stability range, J Non-Cryst. Solids 57(1), 59–70 (1983)

    Article  CAS  Google Scholar 

  39. Y.-S. Hu: Getting solid, Nat. Energy 1(16042), 999999 (2016), https://doi.org/10.1038/nenergy.2016.42

    Article  CAS  Google Scholar 

  40. D. Kunze: Fast Ion Transport in Solids. Solid State Batteries and Devices, ed. by W.V. Gool (North Holland, Amsterdam 1973) p. 495

    Google Scholar 

  41. B. Barrau, A. Kone, M. Ribes, J.L. Souquet, M. Maurin: La conductivité électrique des verres appartenant au système monosulfure de sodium disulfure de germanium, C.R. Hebd. Seances Acad. Sci. C 287, 43 (1978)

    CAS  Google Scholar 

  42. B. Barrau, J.M. Latour, D. Ravaine, M. Ribes: Synthèse et étude des propriétés électriques de nouveaux verres à conductivité ionique élevée, Proc. Conference on Science of Materials and Energy Problems (Brussels 1977), Silic. Ind. 12, 275 (1979)

    Google Scholar 

  43. M. Ribes, D. Ravaine, J.L. Souquet, M. Maurin: Synthese, structure et conduction ionique de nouveaux verres a base de sulfures, Rev. Chim. Minér. 16, 339 (1979)

    CAS  Google Scholar 

  44. M. Ribes, B. Barrau, J.L. Souquet: Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems, J. Non-Cryst. Solids 38/39, 271 (1980)

    Article  Google Scholar 

  45. J.-P. Malugani, B. Fahys, R. Mercier, G. Robert, J.P. Duchange, S. Baudry, M. Broussely, J.P. Gabano: De nouveaux verres conducteurs par l'ion lithium et leurs applications dans des générateurs electrochimiques, Solid State Ion. 9/10, 659–665 (1983)

    Article  Google Scholar 

  46. J. Akridge, H. Vourlis: Solid state batteries using vitreous solid electrolytes, Solid State Ion. 18/19, 1082–1087 (1986)

    Article  Google Scholar 

  47. J. Akridge, H. Vourlis: Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte, Solid State Ion. 28/30, 841–846 (1988)

    Article  Google Scholar 

  48. A. Levasseur, M. Menetrier, R. Dormoy, G. Meunier: Solid state microbatteries, Mater. Sci. Eng. B 3, 5–12 (1989)

    Article  Google Scholar 

  49. M. Tatsumisago, A. Hayashi: Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries, Solid State Ion. 225, 342–345 (2012)

    Article  CAS  Google Scholar 

  50. C.A. Angell: Dynamic processes in ionic glasses, Chem. Rev. 90, 523 (1990)

    Article  CAS  Google Scholar 

  51. M. Tatsumisago, Y. Shinkuma, T. Minami: Stabilization of superionic \(\alpha\)-Agl at room temperature in a glass matrix, Nature 354, 217–218 (1991)

    Article  CAS  Google Scholar 

  52. A. Hayashi, Y. Ishikawa, S. Hama, T. Minami, M. Tatsumisago: Fast lithium-ion conducting glass-ceramics in the system Li2S-SiS2-P2S5, Electrochem. Solid State Lett. 6, A47–A49 (2003)

    Article  CAS  Google Scholar 

  53. M. Tatsumisago, M. Nagao, A. Hayashi: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, J. Asian Ceram. Soc. 1, 17–25 (2013)

    Article  Google Scholar 

  54. J. Fu: Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ion. 96, 195–200 (1997)

    Article  CAS  Google Scholar 

  55. J. Fu: Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5, Solid State Ion. 104, 191–194 (1997)

    Article  CAS  Google Scholar 

  56. F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses, Adv. Mater. 17, 918–921 (2005)

    Article  CAS  Google Scholar 

  57. A. Hayashi, K. Minami, M. Tatsumisago: High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries, J. Non-Cryst. Solids 355(37–42), 1919 (2009)

    Article  CAS  Google Scholar 

  58. P.E. Doherty, D.W. Lee, R.S. Davis: Direct observation of the crystallization of Li2O-Al2O3-SiO2 glasses containing TiO2, J. Am. Ceram. Soc. 50, 77 (1967)

    Article  CAS  Google Scholar 

  59. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno: High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy 1, 16030 (2016)

    Article  CAS  Google Scholar 

  60. R. Mercier, J.-P. Malugani, B. Fahys, G. Robert: Superionic conduction in Li2S-P2S5-LiI-glasses, Solid State Ion. 5, 663–666 (1981)

    Article  CAS  Google Scholar 

  61. S. Ujiie, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivity of (100-x)(0.8Li2S\(\cdot{}\)0.2P2S5)\(\cdot{}\)xLiI glass–ceramic electrolytes, J. Solid State Electrochem. 17(3), 675 (2013)

    Article  CAS  Google Scholar 

  62. H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller: Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull. 18(2), 189 (1983)

    Article  CAS  Google Scholar 

  63. M. Ménétrier, A. Levasseur, C. Delmas, J.F. Audebert, P. Hagenmüller: New secondary batteries for room temperature applications using a vitreous electrolyte, Solid State Ion. 14(3), 257 (1984)

    Article  Google Scholar 

  64. A. Pradel, M. Ribes: Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching, Solid State Ion. 18/19, 351 (1986)

    Article  Google Scholar 

  65. J.H. Kennedy, Z. Zhang: Preparation and electrochemical properties of the SiS2-P2S5-Li2S glass coformer system, J. Electrochem. Soc. 135(8), C396 (1988)

    Google Scholar 

  66. J.H. Kennedy, Y. Yang: Glass-forming region and structure in SiS2-Li2S-LiX (X = Br, I), J. Solid State Chem. 69(2), 252 (1987)

    Article  CAS  Google Scholar 

  67. Z.M. Zhang, J.H. Kennedy: Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems, Solid State Ion. 38(3/4), 217–224 (1990)

    Article  CAS  Google Scholar 

  68. S. Kondo, K. Takada: New lithium ion conductors based on Li2S-SiS2 system, Solid State Ionics 53–56, 1183 (1992)

    Article  Google Scholar 

  69. N. Aotani, K. Iwamoto, K. Takada, S. Kondo: Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2, Solid State Ion. 68(1/2), 35 (1994)

    Article  CAS  Google Scholar 

  70. K. Hirai, M. Tatsumisago, T. Minami: Thermal and electrical properties of rapidly quenched glasses in the systems Li2S-SiS2-LixMOy (LixMOy= Li4SiO4, Li2SO4), Solid State Ion. 78(3/4), 269 (1995)

    Article  CAS  Google Scholar 

  71. M. Tatsumisago, K. Hirai, T. Minami, M. Takahashi: Preparation and characterisation of superionic Li2S-SiS2-Li4GeO4 glasses, Phys. Chem. Glasses 38(2), 63 (1997)

    CAS  Google Scholar 

  72. A. Hayashi, M. Tatsumisago, T. Minami: Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 oxysulfide glasses, J. Electrochem. Soc. 146(9), 3472 (1999)

    Article  CAS  Google Scholar 

  73. M. Tatsumisago, N. Machida, T. Minami: Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses, J. Ceram. Soc. Jpn. 95, 197–201 (1987)

    CAS  Google Scholar 

  74. A. Yamauchi, A. Sakuda, A. Hayashi, M. Tatsumisago: Preparation and ionic conductivities of (100-x)(0.75Li2S\(\cdot{}\)0.25P2S5)\(\cdot{}\)xLiBH4 glass electrolytes, J. Power Sources 244, 707 (2013)

    Article  CAS  Google Scholar 

  75. H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of new amorphous materials of 60Li2S\(\cdot{}\)40SiS2 with high lithium ion conductivity, J. Am. Ceram. Soc. 82(5), 1352 (1999)

    Article  CAS  Google Scholar 

  76. H. Morimoto, H. Yamashita, M. Tatsumisago, T. Minami: Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4, J. Ceram. Soc. Jpn. 108(2), 128 (2000)

    Article  CAS  Google Scholar 

  77. M. Tatsumisago, H. Yamashita, A. Hayashi, H. Morimoto, T. Minami: Preparation and structure of amorphous solid electrolytes based on lithium sulfide, J. Non-Cryst. Solids 274(1–3), 30 (2000)

    Article  CAS  Google Scholar 

  78. A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami: Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc. 84(2), 477 (2001)

    Article  CAS  Google Scholar 

  79. J.E. Trevey, J.R. Gilsdorf, S.W. Miller, S.-H. Lee: Li2S–Li2O–P2S5 solid electrolyte for all-solid-state lithium batteries, Solid State Ion. 214, 25–30 (2012)

    Article  CAS  Google Scholar 

  80. A. Hayashi, S. Hama, T. Minami, M. Tatsumisago: Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses, Electrochem. Commun. 5(2), 111 (2003)

    Article  CAS  Google Scholar 

  81. M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto, T. Minami: New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses, Solid State Ion. 154/155, 635–640 (2002)

    Article  Google Scholar 

  82. M. Tatsumisago: Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ion. 175, 13–18 (2004)

    Article  CAS  Google Scholar 

  83. A. Sakuda, A. Hayashi, M. Tatsumisago: Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery, Sci. Rep. 3(2261), 1–5 (2013)

    Google Scholar 

  84. F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: High lithium ion conducting glass-ceramics in the system Li2S–P2S5, Solid State Ion. 177(26–32), 2721 (2006)

    Article  CAS  Google Scholar 

  85. H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago: Crystal structure of a superionic conductor, Li7P3S11, Solid State Ion. 178(15–18), 1163 (2007)

    Article  CAS  Google Scholar 

  86. K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes, J. Power Sources 189(1), 651 (2009)

    Article  CAS  Google Scholar 

  87. K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago: Structure and properties of the 70Li2S\(\cdot{}\)(30–x)P2S5\(\cdot{}\)xP2O5 oxysulfide glasses and glass–ceramics, J. Non-Cryst. Solids 354(2–9), 370 (2008)

    Article  CAS  Google Scholar 

  88. K. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids, J. Ceram. Soc. Jpn 118, 305–308 (2010)

    Article  CAS  Google Scholar 

  89. H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion. 182, 116–119 (2011)

    Article  CAS  Google Scholar 

  90. T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto: Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling, J. Non-Cryst. Solids 364, 57–61 (2013)

    Article  CAS  Google Scholar 

  91. A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago: Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloys Compd. 591, 247–250 (2014)

    Article  CAS  Google Scholar 

  92. A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama: Improvement of chemical stability of Li3PS4glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles, J. Mater. Chem. A 1, 6320–6326 (2013)

    Article  CAS  Google Scholar 

  93. A. Weisbach: Argyrodit, ein neues Silbererz, Neues Jahrb. Mineral. Geol. Paläontol. 2, 67–71 (1886), http://rruff.info/uploads/Neues_Jahrbuch_fur_Mineralogie_Geologi_1884_67.pdf

    Google Scholar 

  94. W.F. Kuhs, R. Nitsche, K. Scheunemann: The argyrodites—A new family of tetrahedrally close-packed structures, Mater. Res. Bull. 14(2), 241 (1979)

    Article  CAS  Google Scholar 

  95. H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser: Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed. 47(4), 755 (2008)

    Article  CAS  Google Scholar 

  96. R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes, J. Solid State Electrochem. 16, 1807–1813 (2012)

    Article  CAS  Google Scholar 

  97. R.P. Rao, N. Sharma, V.K. Peterson, S. Adams: Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction, Solid State Ion. 230, 72–76 (2013)

    Article  CAS  Google Scholar 

  98. S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet: Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application, Solid State Ion. 221, 1–5 (2012)

    Article  CAS  Google Scholar 

  99. M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab: Novel Li3ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A 2, 5470–5480 (2014)

    Article  CAS  Google Scholar 

  100. M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough: Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy Environ. Sci. 9, 948–954 (2016)

    Article  CAS  Google Scholar 

  101. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck: Electrical properties of amorphous lithium electrolyte thin films, Solid State Ion. 53–56, 647 (1992)

    Article  Google Scholar 

  102. X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524 (1997)

    Article  CAS  Google Scholar 

  103. L.M. Goncalves, J.F. Ribeiro, M.F. Silva, M.M. Silva, J.H. Correia: Integrated solid-state film lithium battery, Procedia Eng. 5, 778–781 (2010)

    Article  CAS  Google Scholar 

  104. H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, J. Cho: Recent progress in nanostructured cathode materials for lithium secondary batteries, Adv. Funct. Mater. 20, 3818–3834 (2010)

    Article  CAS  Google Scholar 

  105. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, K.B. Carretero-Gonzalez, J. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5, 5884–5901 (2012)

    Article  CAS  Google Scholar 

  106. B.L. Ellis, L.F. Nazar: Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012)

    Article  CAS  Google Scholar 

  107. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba: Research development on sodium-ion batteries, Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  Google Scholar 

  108. D. Kundu, E. Talaie, V. Duffort, L.F. Nazar: The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54, 3431–3448 (2015)

    Article  CAS  Google Scholar 

  109. A. Manthiram, X. Yu: Ambient temperature sodium-sulfur batteries, Small 11, 2108–2114 (2015)

    Article  CAS  Google Scholar 

  110. J.T. Kummer: \(\upbeta\)-Alumina electrolytes, Prog. Solid State Chem. 7, 141–175 (1972)

    Article  CAS  Google Scholar 

  111. A. Hooper: A study of the electrical properties of single-crystal and polycrystalline \(\upbeta\)-alumina using complex plane analysis, J. Phys. D 10, 1487 (1977)

    Article  CAS  Google Scholar 

  112. U. Von Alpen, M.F. Bell, H.H. Höfer: Compositional dependence of the electrochemical and structural parameters in the nasicon system (Na1+xSixZr2P3-xO12), Solid State Ion. 3/4, 215–218 (1981)

    Article  Google Scholar 

  113. J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas: Fast Na+-ion transport in skeleton structures, Mater. Res. Bull. 11, 203–220 (1976)

    Article  CAS  Google Scholar 

  114. A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun. 3(856), 1–5 (2012)

    Google Scholar 

  115. W. Yao, K. Berg, S. Martin: Structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system, J. Non-Cryst. Solids 354(18), 2045 (2008)

    Article  CAS  Google Scholar 

  116. H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma: Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10, 1075–1101 (2017)

    Article  CAS  Google Scholar 

  117. J.-J. Kim, K. Yoon, I. Park, K. Kang: Progress in the development of sodium-ion solid electrolytes, Small Methods 1(10), 1700219 (2017)

    Article  CAS  Google Scholar 

  118. S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller, S.W. Martin: Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling, J. Non-Cryst. Solids 358, 93–98 (2012)

    Article  CAS  Google Scholar 

  119. M. Jansen, U. Henseler: Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate, J. Solid State Chem. 99(1), 110 (1992)

    Article  CAS  Google Scholar 

  120. K. Noi, A. Hayashi, M. Tatsumisago: Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling, J. Power Sources 269, 260–265 (2014)

    Article  CAS  Google Scholar 

  121. A. Hayashi, K. Noi, N. Tanibata, M. Nagao, M. Tatsumisago: High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources 258, 420–423 (2014)

    Article  CAS  Google Scholar 

  122. S. Yubuchi, A. Hayashi, M. Tatsumisago: Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide, Chem. Lett. 44(7), 884–886 (2015)

    Article  CAS  Google Scholar 

  123. N. Tanibata, K. Noi, A. Hayashi, M. Tatsumisago: Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes, RSC Advances 4, 17120–17123 (2014)

    Article  CAS  Google Scholar 

  124. L. Zhang, K. Yang, J. Mi, L. Lu, L. Zhao, L. Wang, Y. Li, H. Zeng: Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity, Adv. Energy Mater. 5, 1501294 (2015)

    Article  CAS  Google Scholar 

  125. Y. Hibi, N. Tanibata, A. Hayashi, M. Tatsumisago: Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ion. 270, 6–9 (2015)

    Article  CAS  Google Scholar 

  126. Y. Onodera, H. Nakashima, K. Mori, T. Otomo, T. Fukunaga: Structure and conductivity of Na-P-S superionic conducting glasses studied by Neutron and x-ray diffraction, JPS Cinf. Proc. 8, 031031 (2015)

    Google Scholar 

  127. S.-L. Shang, Z. Yu, Y. Wang, D. Wang, Z.-K. Liu: Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor, Appl. Mater. Interfaces 9, 16261–16269 (2017)

    Article  CAS  Google Scholar 

  128. Z. Yu, S.-L. Shang, J.-H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.-K. Liu, D. Wang: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries, Adv. Mater. 29, 1605561 (2017)

    Article  CAS  Google Scholar 

  129. H. Wang, Y. Chen, Z.D. Hood, G. Sahu, A.S. Pandian, J.K. Keum, K. An, C. Liang: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure, Angew. Chem. Int. Ed. 55, 8551–8555 (2016)

    Article  CAS  Google Scholar 

  130. A. Banerjee, K.H. Park, J.W. Heo, Y.J. Nam, C.K. Moon, S.M. Oh, S.T. Hong, Y.S. Jung: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries, Angew. Chem. 128, 9786 (2016)

    Article  Google Scholar 

  131. S.-H. Bo, Y. Wang, J.C. Kim, W.D. Richards, G. Ceder: Computational and experimental investigations of Na-ion conduction in cubic Na3PSe4, Chem. Mater. 28, 252–258 (2016)

    Article  CAS  Google Scholar 

  132. Y. Wang, W.D. Richards, S.-H. Bo, L.J. Miara, G. Ceder: Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se), Chem. Mater. 29, 7475–7482 (2017)

    Article  CAS  Google Scholar 

  133. W.D. Richards, T. Tsujimura, L.J. Miara, Y. Wang, J.C. Kim, S.P. Ong, I. Uechi, N. Suzuki, G. Ceder: Design and synthesis of the superionic conductor Na10SnP2S12, Nat. Commun. 7, 11009 (2016)

    Article  CAS  Google Scholar 

  134. C. Li, S. Jiang, J. Lv, T. Zheng: Ionic conductivities of Na–Ge–P glass ceramics as solid electrolyte, J. Alloys Compd. 633, 246–249 (2015)

    Article  CAS  Google Scholar 

  135. T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu: Electrical conductivity of Na2O–Nb2O5–P2O5 glass and fabrication of glass–ceramic composites with NASICON type Na3Zr2Si2PO12, Solid State Ion. 269, 19–23 (2015)

    Article  CAS  Google Scholar 

  136. Y. Ni, R. Zheng, X. Tan, W. Yue, P. Lv, J. Yang, D. Song, K. Yu, W. Wei: A fluorophosphate glass–ceramic electrolyte with superior ionic conductivity and stability for Na-ion batteries, J. Mater. Chem. A 3, 17558–17562 (2015)

    Article  CAS  Google Scholar 

  137. M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough: Electric dipoles and ionic conductivity in a Na+ glass electrolyte, J. Electrochem. Soc. 164(2), A207–A213 (2017)

    Article  CAS  Google Scholar 

  138. M.H. Braga, J.A. Ferreira, A.J. Murchison: An electrochemical solid carbon-sulfur Na-ion based device and uses thereof, Patent WO2016157083A1 (2016)

    Google Scholar 

  139. M. Venkateswarlu, N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries, Mater. Sci. Eng. B 54, 189–195 (1998)

    Article  Google Scholar 

  140. S.S. Das, B.P. Baranwal, C.P. Gupta, P. Singh: Characteristics of solid-state batteries with zinc/cadmium halide-doped silver phosphate glasses as electrolytes, J. Power Sources 114, 346–351 (2003)

    Article  CAS  Google Scholar 

  141. R.C. Agrawal, M.L. Verma, R.K. Gupta: Electrical and electrochemical properties of a new silver tungstate glass system: X[0.75AgI: 0.25AgCl]: (1-x)[Ag2O: WO3, Solid State Ion. 171(3/4), 199–205 (2004)

    Article  CAS  Google Scholar 

  142. E. Lefterova, S. Bliznakov, P. Angelov, S. Vassilev, Y. Dimitriev: New silver fast ion-conducting glassy materials in the AgI-Ag2So4TeO2 system for solid state batteries, Bulg. chem. Commun. 38(3), 197–201 (2006)

    CAS  Google Scholar 

  143. S. Bhattacharya, A. Ghosh: Relaxation of silver ions in superionic borate glasses, Chem. Phys. Lett. 424, 295 (2006)

    Article  CAS  Google Scholar 

  144. S.S. Das, P.K. Srivastava, N.B. Singh: Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid state batteries, J. Non-Cryst. Solids 358, 2841–2846 (2012)

    Article  CAS  Google Scholar 

  145. S.A. Suthanthiraraj, R. Sarumathi: A new silver ion conducting SbI3–Ag4P2O7 nanocomposite solid electrolyte, Appl. Nanosci. 3, 501–508 (2013)

    Article  CAS  Google Scholar 

  146. G. Delaizir, N. Manafi, G. Jouan, P. Rozier, M. Dolle: All-solid-state silver batteries assembled by spark plasma sintering, Solid State Ion. 207, 57–63 (2012)

    Article  CAS  Google Scholar 

  147. T. Takahashi, S. Ikeda, O. Yamamoto: Solid-state ionics: A new high ionic conductivity solid electrolyte Ag6I4WO4 and use of this compound in a solid-electrolyte cell, J. Electrochem. Soc. 120, 647–651 (1973)

    Article  CAS  Google Scholar 

  148. E.M. Masoud, M. Khairy, M.A. Mousa: Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery, J. Alloys Compd. 569, 150–155 (2013)

    Article  CAS  Google Scholar 

  149. X. Ji, L.F. Nazar: Advances in Li–S batteries, J. Mater. Chem. 20, 9821–9826 (2010)

    Article  CAS  Google Scholar 

  150. D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns: Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes, J. Power Sources 89, 219–226 (2000)

    Article  CAS  Google Scholar 

  151. M. Ribes, B. Carette, M. Maurin: Verres conducteurs ioniques du système Li2S-GeS2-LiI. Leur utilisation dans des générateurs “tout solide” à anode de lithium, J. Phys. Colloq. C 9(43), 403–406 (1982)

    Google Scholar 

  152. B. Carette, M. Maurin, M. Ribes, M. Duclot: Ionic conductive sulfide-based M2S-GeS2-MI (M = Li, Ag) glass systems. Their use in solid state batteries, Solid State Ion. 9/10, 655 (1983)

    Article  Google Scholar 

  153. B. Knutz, S. Skaarup: Cycling of Li/Li3N/TiS2 solid state cells, Solid State Ion. 9/10, 371 (1983)

    Article  Google Scholar 

  154. T. Minami, A. Hayashi, M. Tatsumisago: Preparation and characterization of lithium ion-conducting oxysulfide glasses, Solid State Ion. 136/137, 1015 (2000)

    Article  Google Scholar 

  155. R. Komiya, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami: Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S\(\cdot{}\)0.4SiS2)\(\cdot{}\)xLi4SiO4 obtained by mechanochemical synthesis, Solid State Ion. 140(1/2), 83–87 (2001)

    Article  CAS  Google Scholar 

  156. F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Effects of conductive additives in composite positive electrodes on charge–discharge behaviors of all-solid-state lithium secondary batteries, J. Electrochem. Soc. 152(8), A1499 (2005)

    Article  CAS  Google Scholar 

  157. F. Mizuno, S. Hama, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All solid-state lithium secondary batteries using high lithium ion conducting Li2S–P2S5 glass-ceramics, Chem. Lett. 31(12), 1244 (2002)

    Article  Google Scholar 

  158. H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte, J. Electrochem. Soc. 157(4), A407 (2010)

    Article  CAS  Google Scholar 

  159. F. Mizuno, A. Hayashi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material, J. Power Sources 124(1), 170 (2003)

    Article  CAS  Google Scholar 

  160. H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes, Electrochim. Acta 55(28), 8821 (2010)

    Article  CAS  Google Scholar 

  161. A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago: All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes, J. Power Sources 146(1/2), 496 (2005)

    Article  CAS  Google Scholar 

  162. H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Preparation of \(\upalpha\)-Fe2O3 electrode materials via solution process and their electrochemical properties in all-solid-state lithium batteries, J. Electrochem. Soc. 154(7), A725 (2007)

    Article  CAS  Google Scholar 

  163. Y. Nishio, H. Kitaura, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction, J. Power Sources 189(1), 629 (2009)

    Article  CAS  Google Scholar 

  164. M. Nagao, H. Kitaura, A. Hayashi, M. Tatsumisago: Characterization of all-solid-state lithium secondary batteries using CuxMo6S8-y electrode and Li2S–P2S5 solid electrolyte, J. Power Sources 189(1), 672 (2009)

    Article  CAS  Google Scholar 

  165. A. Hayashi, A. Inoue, M. Tatsumisago: Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries, J. Power Sources 189(1), 669 (2009)

    Article  CAS  Google Scholar 

  166. M. Nagao, A. Hayashi, M. Tatsumisago: All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 196(16), 6902 (2011)

    Article  CAS  Google Scholar 

  167. K. Aso, H. Kitaura, A. Hayashi, M. Tatsumisago: SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries, J. Ceram. Soc. Jpn 118(1379), 620 (2010)

    Article  CAS  Google Scholar 

  168. T. Ohzuku, A. Ueda, N. Yamamoto: Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142(5), 1431 (1995)

    Article  CAS  Google Scholar 

  169. K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago: Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5, Solid State Ion. 192, 122–125 (2011)

    Article  CAS  Google Scholar 

  170. M. Nagao, A. Hayashi, M. Tatsumisago: Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery, Electrochem. Commun. 22, 177–180 (2012)

    Article  CAS  Google Scholar 

  171. M. Nagao, A. Hayashi, M. Tatsumisago: Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte, Electrochemistry 80, 734–736 (2012)

    Article  CAS  Google Scholar 

  172. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18(17), 2226 (2006)

    Article  CAS  Google Scholar 

  173. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9(7), 1486 (2007)

    Article  CAS  Google Scholar 

  174. H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode, Solid State Ion. 192(1), 304 (2011)

    Article  CAS  Google Scholar 

  175. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O–SiO2 glasses, Electrochem. Solid State Lett. 11(1), A1 (2008)

    Article  CAS  Google Scholar 

  176. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: Modification of interface between LiCoO2 electrode and Li2S–P2S5 solid electrolyte using Li2O–SiO2 glassy layers, J. Electrochem. Soc. 156(1), A27 (2009)

    Article  CAS  Google Scholar 

  177. A. Sakuda, A. Hayashi, M. Tatsumisago: Interfacial Observation between LiCoO2 Electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater. 22(3), 949 (2010)

    Article  CAS  Google Scholar 

  178. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago: All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte, J. Power Sources 189(1), 527 (2009)

    Article  CAS  Google Scholar 

  179. A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries, Electrochem. Solid State Lett. 13(6), A73 (2010)

    Article  CAS  Google Scholar 

  180. A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes, J. Power Sources 196, 6735–6741 (2011)

    Article  CAS  Google Scholar 

  181. H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes, J. Mater. Chem. 21(1), 118 (2011)

    Article  CAS  Google Scholar 

  182. F. Stadler, C. Fietzek: Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries, ECS Transactions 25, 177 (2010)

    Article  CAS  Google Scholar 

  183. S. Boulineau: Synthèses et caractérisations de matériaux céramiques, vitreux et vitrocéramiques à base de soufre, utilisables comme électrolytes dans les batteries tout-solide, Ph.D. Thesis (University Picardie Jules Verne, Amiens France 2013), https://tel.archives-ouvertes.fr/tel-01356443

    Google Scholar 

  184. S. Boulineau, J.-M. Tarascon, J.-B. Leriche, V. Viallet: Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte, Solid State Ion. 242, 45–48 (2013)

    Article  CAS  Google Scholar 

  185. N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245–249 (2005)

    Article  CAS  Google Scholar 

  186. K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo: Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ion. 9, 1445–1448 (1983)

    Article  Google Scholar 

  187. R. Creus, J. Sarradin, R. Astier, A. Pradel, A.M. Ribes: The use of ionic and mixed conductive glasses in microbatteries, Mater. Sci. Eng. B 3(1/2), 109–112 (1989)

    Article  Google Scholar 

  188. G. Meunier, R. Dormoy, A. Levasseur: New positive-electrode materials for lithium thin film secondary batteries, Mater. Sci. Eng. B 3(1/2), 19–23 (1989)

    Article  Google Scholar 

  189. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson: Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43/44, 103–110 (1993)

    Article  Google Scholar 

  190. S.-J. Lee, H.-K. Baik, S.-M. Lee: An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films, Electrochem. Commun. 5, 32–35 (2003)

    Article  CAS  Google Scholar 

  191. V.P. Phan, B. Pecquenard, F.L. Cras: High-performance all-solid-state cells fabricated with silicon electrodes, Adv. Funct. Mater. 22(12), 2580–2584 (2012)

    Article  CAS  Google Scholar 

  192. B. Fleutot, B. Pecquenard, F.L. Cras, B. Delis, H. Martinez, L. Dupont, A. Levasseur: Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale, J. Power Sources 196, 10289–10296 (2011)

    Article  CAS  Google Scholar 

  193. B.J. Neudecker, R.A. Zuhr, J.B. Bates: Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics, J. Power Sources 81, 27–32 (1999)

    Article  Google Scholar 

  194. B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr, J.D. Robertson: Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc. 143(10), 3203–3213 (1996)

    Article  CAS  Google Scholar 

  195. J.B. Bates, D. Lubben, N.J. Dudney: Thin-film Li-LiMn2O4 batteries, IEEE Aerosp. Electron. Syst. Mag. 10(4), 30–32 (1995)

    Article  Google Scholar 

  196. B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur: Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance, Solid State Ion. 186, 29–36 (2011)

    Article  CAS  Google Scholar 

  197. B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances, Solid State Ion. 206, 72–77 (2012)

    Article  CAS  Google Scholar 

  198. B. Fleutot, B. Pecquenard, H. Martinez, A. Levasseur: Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries, Solid State Ion. 249/250, 49–55 (2013)

    Article  CAS  Google Scholar 

  199. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon: Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11(1), 19 (2012)

    Article  CAS  Google Scholar 

  200. N. Machida, T. Shigematsu: An all-solid-state lithium battery with sulfur as positive electrode materials, Chem. Lett. 33(4), 376 (2004)

    Article  CAS  Google Scholar 

  201. A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago: All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes, Electrochem. Commun. 5(8), 701 (2003)

    Article  CAS  Google Scholar 

  202. A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago: All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material, J. Power Sources 183(1), 422 (2008)

    Article  CAS  Google Scholar 

  203. M. Nagao, A. Hayashi, M. Tatsumisago: Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte, Electrochim. Acta 56(17), 6055 (2011)

    Article  CAS  Google Scholar 

  204. M. Nagao, Y. Imade, H. Narisawa, T. Kobayashi, R. Watanabe, T. Yokoi, T. Tatsumi, R. Kanno: All-solid-state lithium–sulfur batteries with three-dimensional mesoporous electrode structures, J. Power Sources 222, 237 (2013)

    Article  CAS  Google Scholar 

  205. T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao, R. Watanabe, T. Yokoi, A. Yamada, R. Kanno, T. Tatsumi: All solid-state battery with sulfur electrode and thio-LISICON electrolyte, J. Power Sources 182(2), 621 (2008)

    Article  CAS  Google Scholar 

  206. F. Lufrano, P. Staiti: Influence of the surface—chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors, Energy Fuels 24, 3313–3320 (2010)

    Article  CAS  Google Scholar 

  207. H.B. Lin, W.Z. Huang, H.B. Rong, J.N. Hu, S.W. Mai, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li: Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries, J. Power Sources 287, 276–282 (2015)

    Article  CAS  Google Scholar 

  208. M. Chen, S. Adams: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte, J. Solid State Electrochem. 19, 697–702 (2015)

    Article  CAS  Google Scholar 

  209. N. Tanibata, T. Matsuyama, A. Hayashi, M. Tatsumisago: All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity, J. Power Sources 275, 284–287 (2015)

    Article  CAS  Google Scholar 

  210. K. Takada, T. Kanbara, Y. Yamamura, S. Kondo: Rechargeable solid-state batteries with silver ion conductors, Solid State Ion. 40/41, 988–992 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Viallet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Viallet, V., Seznec, V., Hayashi, A., Tatsumisago, M., Pradel, A. (2019). Glasses and Glass-Ceramics for Solid-State Battery Applications. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_50

Download citation

Publish with us

Policies and ethics