Skip to main content

Phase-Change Memory and Optical Data Storage

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

  • 7325 Accesses

Abstract

Phase-change memory is regarded as the most appealing of the nonvolatile memory technologies, with attractive properties including scalability, bit alterability, and fast write/erase and read performance. Over the past decade, the technology has experienced rapid growth. Well-known semiconductor manufacturers such as IBM, Infineon, Samsung, and Macronix have spared no effort in the push to commercialize this technology. At the same time, many novel phase-change materials have been developed, such as typical Ge-Sb-Te alloys, Zn-Sb-Te alloys, and ZnO-\(\mathrm{Sb_{2}Te_{3}}\) nanocomposite.

New techniques such as ultrafast calorimetry are continuously emerging to better understand the crystallization kinetics of supercooled liquids for phase-change materials. In addition, phase-change materials are ideal functional materials for use in integrated photonic memory, which provides a new paradigm in all-photonic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Lai: Brief history of ETOX NOR flash memory, J. Nanosci. Nanotechnol. 12(10), 7597–7603 (2012)

    Article  CAS  Google Scholar 

  2. Y. Fujisaki: Overview of emerging semiconductor non-volatile memories, IEICE Electron. Express 9(10), 908–925 (2012)

    Article  Google Scholar 

  3. H. Lan, H. Liu: UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds, J. Nanosci. Nanotechnol. 13(5), 3145–3172 (2013)

    Article  CAS  Google Scholar 

  4. H.J. Borg, R.V. Woudenberg: Trends in optical recording, J. Magn. Magn. Mater. 193(1–3), 519–525 (1999)

    Article  CAS  Google Scholar 

  5. C.-Y. Lu: Future prospects of NAND flash memory technology-the evolution from floating gate to charge trapping to 3D stacking, J. Nanosc. Nanotechnol. 12(10), 7604–7618 (2012)

    Article  CAS  Google Scholar 

  6. C. Miccoli, C.M. Compagnoni, L. Chiavarone, S. Beltrami, A.L. Lacaita, A.S. Spinelli, A. Visconti: Reliability characterization issues for nanoscale flash memories: A case study on 45-nm NOR devices, IEEE Trans. Dev. Mater. Reliab. 13(2), 362–369 (2013)

    Article  Google Scholar 

  7. J.F. Scott: Ferroelectric Memories (Springer, Berlin, Heidelberg 2000)

    Book  Google Scholar 

  8. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O'Sullivan, S.L. Brown, J. Bucchigano, A. D. W., Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory, J. Appl. Phys. 85, 5828 (1999)

    Article  CAS  Google Scholar 

  9. S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam: Phase-change random access memory: A scalable technology, IBM J. Res. Dev. 52(4.5), 465–479 (2008)

    Article  CAS  Google Scholar 

  10. H. Akinaga, H. Shima: Resistive random access memory (ReRAM) based on metal oxides, Proc. IEEE 98(12), 2237–2251 (2010)

    Article  CAS  Google Scholar 

  11. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jachson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy: Phase change memory technology, J. Vac. Sci. Technol. B 28(2), 223–262 (2010)

    Article  CAS  Google Scholar 

  12. S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  13. X.S. Miao, L.P. Shi, H.K. Lee, J.M. Li, R. Zhao, P.K. Tan, T.C. Chong: Temperature dependence of phase-change random access memory cell, Jpn. J. Appl. Phys. 45, 3955 (2006)

    Article  CAS  Google Scholar 

  14. M. Wuttig, N. Yamada: Phase-change materials for rewriteable data storage, Nat. Mater. 6, 824–832 (2007)

    Article  CAS  Google Scholar 

  15. W. Welnic, M. Wuttig: Reversible switching in phase-change materials, Mater. Today 11(6), 20–27 (2008)

    Article  CAS  Google Scholar 

  16. M. Wuttig, D. Lusebrink, D. Wamangi, W. Welnic, M. Gilleßen, R. Dronskowski: The role of vacancies and local distortions in the design of phase-change mateirals, Nat. Mater. 6, 122–128 (2007)

    Article  CAS  Google Scholar 

  17. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga: Understanding the phase-change mechanism of rewritable optical media, Nat. Mater. 3(10), 703–708 (2004)

    Article  CAS  Google Scholar 

  18. S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, Y. Tanaka: Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states, Appl. Phys. Lett. 89(20), 201910 (2006)

    Article  CAS  Google Scholar 

  19. J. Akola, R.O. Jones: Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe, Phys. Rev. B 76(23), 235201 (2007)

    Article  CAS  Google Scholar 

  20. B. Huang, J. Robertson: Bonding origin of optical contrast in phase-change memory materials, Phys. Rev. B 81(8), 081204 (2010)

    Article  CAS  Google Scholar 

  21. R.O. Jones: Bonding in phase change materials: Concepts and misconceptions, J. Phys. Condens. Matter 30(15), 153001 (2018)

    Article  CAS  Google Scholar 

  22. Y.K. Kim, K. Jeong, M.H. Cho, U. Hwang, H.S. Jeong, K. Kim: Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition, Appl. Phys. Lett. 90, 171920 (2007)

    Article  CAS  Google Scholar 

  23. S. Privitera, E. Rimini, R. Zonca: Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements, Appl. Phys. Lett. 85, 3044 (2004)

    Article  CAS  Google Scholar 

  24. B.W. Qiao, J. Feng, Y.F. Lai, Y. Ling, Y.Y. Lin, T. Tang, B.C. Ca, B. Chen: Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory, Appl. Surf. Sci. 252(24), 8404–8409 (2006)

    Article  CAS  Google Scholar 

  25. T.J. Park, S.Y. Choi, M.J. Kang: Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5 thin film for PRAM application, Thin Solid Films 515(12), 5049–5053 (2007)

    Article  CAS  Google Scholar 

  26. K.H. Song, S.W. Kim, J.H. Seo, H.Y. Lee: Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films, Thin Solid Films 517(14), 3958–3962 (2009)

    Article  CAS  Google Scholar 

  27. N. Bai, F.R. Liu, X.X. Han, Z. Zhu, F. Liu, X. Lin, N.X. Sun: Effect of the Sn dopant on the crystallization of amorphous Ge2Sb2Te5 films induced by an excimer laser, Opt. Laser Technol. 74, 11–15 (2015)

    Article  CAS  Google Scholar 

  28. M.H. Jang, S.J. Park, D.H. Lim, M.-H. Cho, K.H. Do, D.-H. Ko, H.C. Sohn: Phase change behavior in oxygen-incorporated Ge2Sb2Te5 films, Appl. Phys. Lett. 95(1), 012102 (2009)

    Article  CAS  Google Scholar 

  29. X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng: Carbon-doped Ge2Sb2Te5 phase change material: A candidate for high-density phase change memory application, Appl. Phys. Lett. 101(14), 202 (2012)

    Article  CAS  Google Scholar 

  30. P. Němec, A. Moreac, V. Nazabal, M. Pavlišta, J. Přikryl, M. Frumar: Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study, J. Appl. Phys. 106, 103509 (2009)

    Article  CAS  Google Scholar 

  31. F. Wei, L. Wang, T. Kong, L. Shi, R. Huang, J. Zhang, G. Cheng: Amorphous thermal stability of Al-doped Sb2Te3 films for phase-change memory application, Appl. Phys. Lett. 103(18), 181908 (2013)

    Article  CAS  Google Scholar 

  32. C. Peng, L.C. Wu, Z.T. Song, F. Rao, M. Zhu, X.L. Li, B. Liu, L.M. Cheng, S.L. Feng, P.X. Yang, J.H. Chu: Performance improvement of Sb2Te3 phase change material by Al doping, Appl. Surf. Sci. 257(24), 10667–10670 (2011)

    Article  CAS  Google Scholar 

  33. J. Xu, B. Liu, Z. Song, S. Feng, B. Chen: Crystallization and C-RAM application of Ag-doped Sb2Te3 material, Mater. Sci. Eng. B 127(2/3), 228–232 (2006)

    Article  CAS  Google Scholar 

  34. Y.J. Chen, B. Zhang, Q.Q. Ding, Q.S. Deng, Y. Chen, Z.T. Song, J.X. Li, Z. Zhang, X.D. Han: Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ, J. Alloy. Compd. 678, 85–92 (2016)

    Google Scholar 

  35. Y. Lu, S. Song, Z. Song, F. Rao, L. Wu, M. Zhu, B. Liu, D. Yao: Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications, Appl. Phys. Lett. 100(19), 193114 (2012)

    Article  CAS  Google Scholar 

  36. M. Zhu, L. Wu, Z. Song, F. Rao, D. Cai, C. Peng, X. Zhou, K. Ren, S. Song, B. Liu, S. Feng: Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed, Appl. Phys. Lett. 100(12), 122101 (2012)

    Article  CAS  Google Scholar 

  37. C. Peng, L. Wu, F. Rao, Z. Song, P. Yang, H. Song, K. Ren, X. Lin, M. Zhu, B. Liu, J. Chu: W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention, Appl. Phys. Lett. 101(12), 122108 (2012)

    Article  CAS  Google Scholar 

  38. Y.C. Her, Y.S. Hsu: Optical properties and crystallization characteristics of Ge-doped Sb70Te30 phase change recording film, Jpn. J. Appl. Phys. 42, 804 (2003)

    Article  CAS  Google Scholar 

  39. Y.S. Hsu, Y.C. Her, S.T. Cheng, S.Y. Tsai: Thermal-and laser-induced order-disorder switching of In-doped fast-growth Sb70Te30 phase-change recording films, IEEE Trans. Magn. 43(2), 936–938 (2007)

    Article  CAS  Google Scholar 

  40. Y.S. Hsu, Y.C. Her, S.T. Cheng, S.Y. Tsai: Thermal-and laser-induced order-disorder switching of Ag-doped fast-growth Sb70Te30 phase-change recording films, Jpn. J. Appl. Phys. 46(6S), 3945 (2007)

    Article  CAS  Google Scholar 

  41. C. Peng, Z. Song, F. Rao, L. Wu, M. Zhu, H. Song, B. Liu, X. Zhou, D. Yao, P. Yang, J. Chu: Al1.3Sb3Te material for phase change memory application, Appl. Phys. Lett. 99(4), 043105 (2011)

    Article  CAS  Google Scholar 

  42. F. Wang, T. Zhang, C. Liu, Z. Song, L. Wu, B. Liu, S. Feng, B. Chen: Au doped Sb3Te phase-change material for C-RAM device, Appl. Surf. Sci. 254(8), 2281–2284 (2008)

    Article  CAS  Google Scholar 

  43. Y. Cheng, Z. Song, Y. Gu, S. Song, F. Rao, L. Wu, B. Liu, S. Feng: Influence of silicon on the thermally-induced crystallization process of Si-Sb4Te phase change materials, Appl. Phys. Lett. 99(26), 261914 (2011)

    Article  CAS  Google Scholar 

  44. G.X. Wang, Q.H. Nie, X. Shen, R.P. Wang, L.C. Wu, J. Fu, T.F. Xu, S.X. Dai: Phase change behaviors of Zn-doped Ge2Sb2Te5 films, Appl. Phys. Lett. 101, 051906 (2012)

    Article  CAS  Google Scholar 

  45. K.F. Kao, C.M. Lee, M.J. Chen, M.J. Tsai, T.S. Chin: Ga2Te3Sb5 – A candidate for fast and ultralong retention phase-change memory, Adv. Mater. 21(17), 169509 (2009)

    Article  CAS  Google Scholar 

  46. G.X. Wang, X. Shen, Y.G. Lu, S.X. Dai, Q.H. Nie, T.F. Xu: Understanding the role of Zn in improving the phase change behaviors of Sb2Te3 films, Thin Solid Films 585, 57–65 (2015)

    Article  CAS  Google Scholar 

  47. X. Shen, G.X. Wang, R.P. Wang, S.X. Dai, L.C. Wu, Y.M. Chen, T.F. Xu, Q.H. Nie: Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application, Appl. Phys. Lett. 102, 131902 (2013)

    Article  CAS  Google Scholar 

  48. G.X. Wang, X. Shen, Q.H. Nie, T.F. Xu, S.X. Dai, Y.G. Lu, Y.M. Chen, J.J. Li: Characterization of physical properties for Zn-doped Sb3Te films, Appl. Phys. Express 6, 095801 (2013)

    Article  CAS  Google Scholar 

  49. G.X. Wang, X. Shen, Q.H. Nie, R.P. Wang, L.C. Wu, Y.G. Lu, S.X. Dai, T.F. Xu, Y.M. Chen: Improved phase-change characteristics of Zn-doped amorphous Sb7Te3 films for high-speed and low-power phase change memory, Appl. Phys. Lett. 103, 031914 (2013)

    Article  CAS  Google Scholar 

  50. K.M.F. Shahil, M.Z. Hossain, V. Goyal, A.A. Balandin: Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials, J. Appl. Phys. 111(5), 054305 (2012)

    Article  CAS  Google Scholar 

  51. J.S. Wei, H. Yuan, F.X. Gan: Crystallization mechanism and course of the Ge2Sb2Te5 thin films under focused pulse laser, J. Inorg. Mater. 17(6), 1245–1252 (2002)

    CAS  Google Scholar 

  52. D.W. Zeng, C.S. Xie, B.L. Zhu, W.L. Song: Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method, Mater. Lett. 58(3/4), 312–315 (2004)

    Article  CAS  Google Scholar 

  53. J. Rocca, M. Erazu, M. Fontana, B. Arcondo: Crystallization process on amorphous GeTeSb samples near to eutectic point Ge15Te85, J. Non-Cryst. Solids 355, 2068–2073 (2009)

    Article  CAS  Google Scholar 

  54. J. Coombs, A. Jongenelis, W. van Es-Spiekman, B. Jacobs: Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth, J. Appl. Phys. 78, 4906–4917 (1995)

    Article  CAS  Google Scholar 

  55. J. Park, M.R. Kim, W.S. Choi, H. Seo, C. Yeon: Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior, Jpn. J. Appl. Phys. 38, 4775 (1999)

    Article  CAS  Google Scholar 

  56. J. Kalb, F. Spaepen, M. Wuttig: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys, Appl. Phys. Lett. 84, 5240–5242 (2004)

    Article  CAS  Google Scholar 

  57. S. Raoux, K. Virwani, C. Cabral Jr, L. Krusin-Elbaum, J.L. Jordan-Sweet, M. Hitzbleck, M. Salinga, A. Madan, T.L. Pinto: Phase transitions in Ge-Sb phase change materials, J. Appl. Phys. 105(6), 064918 (2009)

    Article  CAS  Google Scholar 

  58. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima: From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials, Nat. Mater. 10, 129–134 (2011)

    Article  CAS  Google Scholar 

  59. J. Hegedüs, S. Elliott: Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials, Nat. Mater. 7, 399–405 (2008)

    Article  CAS  Google Scholar 

  60. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wutting: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements, J. Appl. Phys. 87, 4130–4134 (2000)

    Article  CAS  Google Scholar 

  61. Y. Choi, M. Jung, Y.-K. Lee: Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film, Electrochem. Solid-State Lett. 12, F17–F19 (2009)

    Article  CAS  Google Scholar 

  62. J. Orava, A. Greer, B. Gholipour, D. Hewak, C. Smith: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry, Nat. Mater. 11, 279–283 (2012)

    Article  CAS  Google Scholar 

  63. H.E. Kissinger: Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1702–1706 (1957)

    Article  CAS  Google Scholar 

  64. M. Ediger, P. Harrowell, L. Yu: Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity, J. Chem. Phys. 128, 034709 (2008)

    Article  CAS  Google Scholar 

  65. C.V. Thompson, F. Spaepen: On the approximation of the free energy change on crystallization, Acta Metall. 27, 1855–1859 (1979)

    Article  CAS  Google Scholar 

  66. S. Raoux, D. Ielmini: Phase change materials and their application to nonvolatile memories, Chem. Rev. 110, 240–267 (2009)

    Article  CAS  Google Scholar 

  67. M.H. Cohen, G. Grest: Liquid-glass transition, a free-volume approach, Phys. Rev. B 26, 6313 (1982)

    Article  Google Scholar 

  68. M.L.F. Nascimento, E. Dutra Zanotto: Does viscosity describe the kinetic barrier for crystal growth from the liquids to the glass transition?, J. Chem. Phys. 133, 174701 (2010)

    Article  CAS  Google Scholar 

  69. J. Orava, D.W. Hewak, A.L. Greer: Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry, Adv. Funct. Mater. 25, 4851–4858 (2015)

    Article  CAS  Google Scholar 

  70. C. Zhang, L. Hu, Y. Yue, J.C. Mauro: Fragile-to-strong transition in metallic glass-forming liquids, J. Chem. Phys. 133, 014508 (2010)

    Article  CAS  Google Scholar 

  71. B. Chen, J. Momand, P.A. Vermeulen, B.J. Kooi: Crystallization kinetics of supercooled liquid Ge–Sb based on ultrafast calorimetry, Cryst. Growth Des. 16, 242 (2015)

    Article  CAS  Google Scholar 

  72. Y. Chen, G. Wang, L. Song, X. Shen, J. Wang, J. Huo, R. Wang, T. Xu, S. Dai, Q. Nie: Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry, Cryst. Growth Des. 17, 3687 (2017)

    Article  CAS  Google Scholar 

  73. A. Sebastian, M. Le Gallo, D. Krebs: Crystal growth within a phase change memory cell, Nat. Commun. 5, 4314 (2014)

    Article  CAS  Google Scholar 

  74. B.-S. Lee, K. Darmawikarta, S. Raoux, Y.-H. Shih, Y. Zhu, S.G. Bishop, J.R. Abelson: Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory, Appl. Phys. Lett. 104, 071907 (2014)

    Article  CAS  Google Scholar 

  75. W.H.P. Pernice, H. Bhaskaran: Photonic non-volatile memories using phase change materials, Appl. Phys. Lett. 101(17), 171101 (2012)

    Article  CAS  Google Scholar 

  76. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H.P. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photon. 9(9), 725–732 (2015)

    Article  CAS  Google Scholar 

  77. E. Kuramochi, M. Notomi: Optical memory: Phase-change memory, Nat. Photon. 9(11), 712–714 (2015)

    Article  CAS  Google Scholar 

  78. C. Rios, P. Hosseini, C.D. Wright, H. Bhaskaran, W.H.P. Pernice: On-chip photonic memory elements employing phase-change materials, Adv. Mater. 26(9), 1372–1377 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Shen, X., Chen, Y., Wang, G., Lv, Y. (2019). Phase-Change Memory and Optical Data Storage. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_44

Download citation

Publish with us

Policies and ethics