Skip to main content

Molecular Dynamics Simulations of Oxide Glasses

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

Molecular dynamics (), one of the most important atomistic computer simulation methods, and its applications in glass simulations is introduced in this chapter. Essential ingredients of MD simulations such as empirical potentials, thermodynamic ensembles, integration algorithms, and procedures for glass structure generation, as well as structure analysis and property calculations, are covered. MD simulations of silicate-based glasses including silica glass, sodium silicate, soda lime silicate and sodium aluminosilicate glasses, silica glass/water interfaces are given as examples. Issues such as validation of simulated structure models, empirical potential development, and extending time and length scale of simulations are discussed. The chapter concludes with an outlook on future directions of MD simulations of glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1989)

    Google Scholar 

  • C. Massobrio, J. Du, P.S. Salmon, M. Bernasconi (Eds.): Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys, Springer Series in Material Science, Vol. 215 (Springer, Cham 2015)

    Google Scholar 

  • A. Leach: Molecular Modeling: Principles and Applications, 2nd edn. (Prentice Hall, Upper Saddle River 2001)

    Google Scholar 

  • B.J. Alder, T.E. Wainwright: Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208 (1957)

    Article  CAS  Google Scholar 

  • A. Rahman: Correlations in the motions of atoms in liquid argon, Phys. Rev. A 136, 405 (1964)

    Article  CAS  Google Scholar 

  • F.H. Stillinger, A. Rahman: Molecular dynamics study of liquid water under high pressure, J. Chem. Phys. 60, 1545 (1974)

    Article  CAS  Google Scholar 

  • L.V. Woodcock, C.A. Angell, P. Cheeseman: Molecular dynamics studies of the vitreous state: Simple ions systems and silica, J. Chem. Phys. 65, 1565 (1976)

    Article  CAS  Google Scholar 

  • T.F. Soules: A molecular dynamics calculation of the structure of sodium silicate glasses, J. Chem. Phys. 71, 4570 (1979)

    Article  CAS  Google Scholar 

  • C. Huang, A.N. Cormack: Structural difference and phase separation on alkali silicate glasses, J. Chem. Phys. 95, 3634–3642 (1991)

    Article  CAS  Google Scholar 

  • C. Huang, A.N. Cormack: The structure of sodium silicate glass, J. Chem. Phys. 93, 8180–8186 (1990)

    Article  CAS  Google Scholar 

  • A.N. Cormack, J. Du: Molecular dynamics simulation of soda-lime-silicate glasses, J. Non-Cryst. Solids 293–295, 283–289 (2001)

    Article  Google Scholar 

  • L.R. Corrales, J. Du: Characterization of ion distributions near the surface of sodium containing and sodium depleted calcium aluminosilicate glass melts, J. Am. Ceram. Soc. 89, 36–41 (2006)

    Article  CAS  Google Scholar 

  • Y. Xiang, J. Du, M.M. Smedskjaer, J.C. Mauro: Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations, J. Chem. Phys. 139, 044507 (2013)

    Article  CAS  Google Scholar 

  • J. Du, L. Kokou, J.R. Rygel, Y. Chen, C. Pantano, R. Woodman, J. Belcher: Structure of cerium phosphate glasses: Molecular dynamics simulations, J. Am. Ceram. Soc. 94, 2393–2401 (2011)

    Article  CAS  Google Scholar 

  • H. Inoue, A. Masuno, Y. Watanabe: Modeling of the structure of sodium borosilicate glasses using pair potentials, J. Phys. Chem. B 116, 12325–12331 (2012)

    Article  CAS  Google Scholar 

  • K.D. Vargheese, A. Tandia, J.C. Mauro: Molecular dynamics simulations of ion-exchanged glass, J. Non-Cryst. Solids 403, 107–112 (2014)

    Article  CAS  Google Scholar 

  • J. Du, C.-H. Chen: Structure and lithium ion diffusion in lithium silicate glasses and at their interfaces with lithium lanthanum titanate crystals, J. Non-Cryst. Solids 358, 3531–3538 (2012)

    Article  CAS  Google Scholar 

  • J. Luo, K.D. Vargheese, A. Tandia, G. Hu, J.C. Mauro: Crack nucleation criterion and its application to impact indentation in glasses, Sci. Rep. 6, 23720 (2016)

    Article  CAS  Google Scholar 

  • J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer: Accelerating the design of functional glasses through modeling, Chem. Mater. 28, 4267–4277 (2016)

    Article  CAS  Google Scholar 

  • W.H. Zachariasen: The atomic arrangement in glasses, J. Amer. Chem. Soc. 54, 3841–3851 (1932)

    Article  CAS  Google Scholar 

  • R.J. Bell, P. Dean: Properties of vitreous silica: Analysis of random network models, Nature 212, 1354–1135 (1966)

    Article  CAS  Google Scholar 

  • P.H. Gaskell, I.D. Tarrant: Refinement of a random network model for vitreous silica, Philos. Mag. B 42, 265–286 (1980)

    Article  CAS  Google Scholar 

  • A.C. Wright, M.F. Thorpe: Eighty years of random networks, Phys. Status Solidi (b) 250, 931–936 (2013)

    Article  CAS  Google Scholar 

  • J. Du, L.R. Corrales: Compositional dependence of the first sharp diffraction peaks of alkali silicate glasses, J. Non-Cryst. Solids 352, 3255–3269 (2006)

    Article  CAS  Google Scholar 

  • J. Du: Challenges in molecular dynamics simulations of multicomponent oxide glasses. In: Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys, Springer Series in Material Science, Vol. 215, ed. by C. Massobrio, J. Du, P.S. Salom, M. Bernasconi (Springer, Cham 2015) pp. 157–180

    Google Scholar 

  • J. Du, A.N. Cormack: Molecular dynamics simulation of the structure and hydroxylation of silica glass surface, J. Am. Ceram. Soc. 88, 2532–2539 (2005)

    Article  CAS  Google Scholar 

  • A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre: A new self-consistent empirical potential model for oxides, silicates and silica based glasses, J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  CAS  Google Scholar 

  • A. Tilloca, N.H. de Leeuw, A.N. Cormack: Shell-model molecular dynamics calculations of modified silicate glasses, Phys. Rev. B 73, 104209 (2006)

    Article  CAS  Google Scholar 

  • A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard: ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A. 105, 9396–9409 (2001)

    Article  CAS  Google Scholar 

  • T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin: The ReaxFF reactive force-field: Development, applications and future directions, NPJ Comput. Mater. 2, 15011 (2016)

    Article  CAS  Google Scholar 

  • J.C. Fogarty, H.M. Aktulga, A.Y. Grama, A.C.T. van Duin, S.A. Pandit: A reactive molecular dynamics simulation of the silica-water interface, J. Chem. Phys. 132, 174704 (2010)

    Article  CAS  Google Scholar 

  • J.M. Rimsza, J. Yeon, A.C.T. van Duin, J. Du: Water-nanoporous silica interactions: Comparison of ReaxFF and ab initio based molecular dynamics simulations, J. Phys. Chem. C 120, 24803–24816 (2016)

    Article  CAS  Google Scholar 

  • J. Rimsza, J. Du: Interfacial structure and evolution of the water-silica gel system by reactive force field based molecular dynamics simulations, J. Phys. Chem. C 121, 11534–11543 (2017)

    Article  CAS  Google Scholar 

  • J. Rimsza, L. Deng, J. Du: Molecular dynamics simulations of nanoporous silica and organosilicate glasses using reactive force field (ReaxFF), J. Non-Cryst. Solids 431, 103–111 (2016)

    Article  CAS  Google Scholar 

  • L.R. Corrales, J. Du: Thermal kinetics of glass simulations, Phys. Chem. Glasses 46, 420–424 (2005)

    CAS  Google Scholar 

  • J. Du: Molecular Dynamics Simulations of the Structures of Silicate Glasses Containing Hydroxyl Groups and Rare Earth Ions, Ph.D. Thesis (Alfred University, Alfred 2004)

    Google Scholar 

  • J. Du, Y. Xiang: Investigating the structure-diffusion-bioactivity relationship of strontium containing bioactive glasses using molecular dynamics based computer simulations, J. Non-Cryst. Solids 432, 35–40 (2016)

    Article  CAS  Google Scholar 

  • J. Du, A.N. Cormack: The medium range structure of sodium silicate glasses, J. Non-Cryst. Solids 349, 66–79 (2004)

    Article  CAS  Google Scholar 

  • X. Yuan, A.N. Cormack: Efficient algorithm for primitive ring statistics in topological networks, Comput. Mater. Sci. 24, 343–360 (2002)

    Article  CAS  Google Scholar 

  • J. Du: Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses, J. Am. Ceram. Soc. 92, 87–95 (2009)

    Article  CAS  Google Scholar 

  • A. Pedone, M.C. Menziani, A.N. Cormack: Dynamic fracture in silica and soda-silicate glasses: From bulk materials to nanowires, J. Phys. Chem. C 119, 25499–25507 (2015)

    Article  CAS  Google Scholar 

  • J. Du, Y. Xiang: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses, J. Non-Cryst. Solids 358, 1059–1071 (2012)

    Article  CAS  Google Scholar 

  • J. Du, L.R. Corrales: ab initio molecular dynamics study of the structure, dynamics, and electronic properties of lithium sisilicate melt and glass, J. Chem. Phys. 125, 114702 (2006)

    Article  CAS  Google Scholar 

  • G.N. Greaves, A. Fontaine, P. Lagarde, D. Raoux, S.J. Gurman: Local structure of silicate glasses, Nature 293, 611–616 (1981)

    Article  CAS  Google Scholar 

  • B. Gee, H. Eckert: Cation distribution in mixed alkali silicate glasses. NMR studies by 23Na-{7Li} and 23Na-{7Li} spin echo double resonance, J. Phys. Chem. 100, 3705–3712 (1996)

    Article  CAS  Google Scholar 

  • C. Chen, J. Du: Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations, J. Am. Ceram. Soc. 98, 534–542 (2015)

    Article  CAS  Google Scholar 

  • J. Du, L.R. Corrales: The first sharp diffraction peaks in silicate glasses: Structure and scattering length dependence, Phys. Rev. B 72, 092201 (2005)

    Article  CAS  Google Scholar 

  • J. Du, L.R. Corrales: Understanding lanthanum aluminate glass structure by correlating molecular dynamics simulation results with neutron and x-ray scattering data, J. Non-Cryst. Solids 353, 210–214 (2007)

    Article  CAS  Google Scholar 

  • M. Ren, J. Du: Structural origin of the thermal and diffusion behaviors of lithium aluminosilicate crystal polymorphs and glasses, J. Am. Ceram. Soc. 99, 2823–2833 (2016)

    Article  CAS  Google Scholar 

  • Y. Xiang, J. Du: Effect of strontium substitution on the structure of 45S5 bioglasses, Chem. Mater. 23, 2703–2717 (2011)

    Article  CAS  Google Scholar 

  • J. Du, J. Rimsza: Atomistic computer simulations of water interactions and dissolution of inorganic glasses, NPJ Mater. Degrad. (2017), https://doi.org/10.1038/s41529-017-0017-y

    Article  Google Scholar 

  • J. Yeon, A.C.T. van Duin: ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its reactions with strained atomic strain energy, J. Phys. Chem. C 120, 305–317 (2016)

    Article  CAS  Google Scholar 

  • S. Gin, P. Jollivet, M. Fournier, F. Angeli, P. Frugier, T. Charpentier: Origin and consequences of silicate glass passivation by surface layers, Nat. Commun. 6, 6360 (2015)

    Article  CAS  Google Scholar 

  • L. Deng, J. Du: Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses, J. Non-Cryst. Solids 453, 177–194 (2016)

    Article  CAS  Google Scholar 

  • J. Rimsza, J. Du: Ab initio molecular dynamics simulations of the hydroxylation of nanoporous silica, J. Am. Ceram. Soc. 98(12), 3748–3757 (2015)

    Article  CAS  Google Scholar 

  • A.S. Cote, A.N. Cormack, A. Tilloca: Reactive molecular dynamcis: An effective tool for modeling sol-gel synthesis of bioglasses, J. Mater. Sci. 53, 9006 (2017)

    Article  CAS  Google Scholar 

  • T.S. Mahadevan, S.H. Garofalini: Dissociative chemisorption of water onto silica and formation of hydronium ions, J. Phys. Chem. C 113, 11177 (2009)

    Article  CAS  Google Scholar 

  • R.L. McGreevy: Reverse Monte Carlo modeling, J. Phys. 13, R877–R913 (2001)

    CAS  Google Scholar 

  • C. Bonhomme, C. Gervais, N. Folliet, F. Pourpoint, C.C. Diogo, J. Lao, E. Jallot, J. Lacroix, J.-M. Nedelec, D. Iuga, J.V. Hanna, M.E. Smith, Y. Xiang, J. Du, D. Laurencin: 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: Antiosteoporotic pharmaceuticals and bioactive glasses, J. Am. Chem. Soc. 134, 12611–12628 (2012)

    Article  CAS  Google Scholar 

  • T. Charpentier, M.C. Menziani, A. Pedone: Computational simulations of solid state NMR spectra: A new era in structure determination of oxide glasses, RSC Advances 3, 10550–10578 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledge financial support of the Center for Performance and Design of Nuclear Waste Forms and Containers, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0016584 and National Science Foundation DMR Ceramic (project # 1508001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Du, J. (2019). Molecular Dynamics Simulations of Oxide Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_32

Download citation

Publish with us

Policies and ethics