Skip to main content

Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this review, we introduce the structural variety of glasses derived from metal organic frameworks, coordination polymers, and hybrid perovskites, in each case stressing the atomic building blocks from which non-crystalline networks are assembled. We describe many ways of producing hybrid glasses, which, irrespective of their novelty, call on an interestingly wide variety of glass-forming methods, from standard melt-quenching to thermal and pressure induced amorphization and ball milling. These raise issues currently fundamental to glass science, not least the ubiquitous influence of mechanical stability on melting, temperature and pressure-induced amorphization, and glass-forming ability. Characterizing hybrid glasses calls on the full range of techniques available, ranging from pair distribution function analysis, neutron and synchrotron radiation methods, differential scanning calorimetry, Raman spectroscopy, to atomistic computer simulation. By considering the different groups of organic–inorganic glass formers together, we are able to throw light on the role of crystalline compressibility on the reversibility of amorphization and on the demarcation between the brittleness and ductility of melt-quenched glasses. Furthermore, in looking at the structural and dynamic properties of hybrid glasses formed from hybrid zeolitic frameworks to perovskites, and the liquids they are condensed from, we anticipate how compositions can be extended and ways in which the physics of this exciting new branch of glass science can be further developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T.D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, D. Ducati, N.J. Terril, H.H.-M. Yeung, Z. Zhou, W. Chen, S. Henke, A.K. Cheetham, G.N. Greaves: Hybrid glasses from strong and fragile metal-organic framework liquids, Nat. Commun. 6, 8079 (2015)

    Article  CAS  Google Scholar 

  • T.D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, G.N. Greaves, T. Richards, G.I. Lampronti, S.A.T. Redfern, F. Blanc, O.K. Farha, J.T. Hupp, A.K. Cheetham, D.A. Keen: Melt-quenched glasses of metal–organic frameworks, J. Am. Chem. Soc. 138, 3484–3492 (2016)

    Article  CAS  Google Scholar 

  • Y. Zhao, S.-Y. Lee, N. Becknell, O.M. Yaghi, C.A. Angell: Nanoporous transparent MOF glasses with accessible internal surface, J. Am. Chem. Soc. 138, 10818–10821 (2016)

    Article  CAS  Google Scholar 

  • O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim: Reticular synthesis and the design of new materials, Nature 423, 705–714 (2003)

    Article  CAS  Google Scholar 

  • G. Férey: Hybrid porous solids: Past, present and future, Chem. Soc. Rev. 37, 191–214 (2008)

    Article  Google Scholar 

  • J.C. Tan, A.K. Cheetham: Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure-property relationships, Chem. Soc. Rev. 40, 1059–1080 (2011)

    Article  CAS  Google Scholar 

  • P.Z. Moghadam, A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, D. Fairen-Jimenez: Development of a Cambridge structural database subset: A collection of metal–organic frameworks for past, present, and future, Chem. Mater. 29, 2618–2625 (2017)

    Article  CAS  Google Scholar 

  • S. Brunauer, P.H. Emmett, E. Tellaer: BET internal surface areas calculated following adsorption of gases in multimolecular layered MQGs, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi: The chemistry and applications of metal-organic frameworks, Science 341, 123044 (2013)

    Article  CAS  Google Scholar 

  • A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O'Keefe, O.M. Yaghi: Synthesis, structure and carbon dioxide capture of zeolitic imidazolate frameworks, Acc. Chem. Res. 43, 58–67 (2009)

    Article  CAS  Google Scholar 

  • J. Čejka, R.E. Morris, P. Nachtigall (Eds.): Zeolites in Catalysis: Properties and Applications (Royal Society of Chemistry, London 2017)

    Google Scholar 

  • C. Baerlocher, L.B. McCuster, D.H. Olson: Atlas of Zeolite Framework Types, 6th edn. (Elsevier, Amsterdam 2007)

    Google Scholar 

  • B. Sels, L. Kustov: Zeolites and Zeolite-Like Materials, 1st edn. (Elsevier, Amsterdam 2016)

    Google Scholar 

  • L. Wondraczek, Z. Pan, T. Palenta, A. Erlebach, S.T. Misture, M. Sierka, M. Micoulaut, U. Hoppe, J. Deubener, G.N. Greaves: Kinetics of decelerated melting, Adv. Sci. 5(5), 1700850 (2018)

    Article  CAS  Google Scholar 

  • G.N. Greaves, F. Meneau, A. Sapelkin, L.M. Colyer, I.A. Gwynn, S. Wade, G. Sankar: Rheology of collapsing zeolites amorphized by temperature and pressure, Nat. Mater. 2, 622–629 (2003)

    Article  CAS  Google Scholar 

  • G.N. Greaves, F. Meneau, F. Kargl, D. Ward, P. Holliman, F. Albergamo: Zeolite collapse and polyamorphism, J. Phys. Condens. Matter 19, 415102 (2007)

    Article  CAS  Google Scholar 

  • J. Haines, C. Levelut, A. Isambert, P. Hébert, S. Kohara, D.A. Keen, T. Hammouda, D. Andrault: Topologically ordered amorphous silica obtained from the collapsed siliceous zeoliste, silicalite-1-F: A step toward “perfect” glasses, J. Am. Chem. Soc. 131, 12333–12338 (2009)

    Article  CAS  Google Scholar 

  • L. Wondraczek, G. Gao, D. Möncke, T. Selvam, A. Kuhnt, W. Schweiger, D. Palles, E.I. Kamitsos: Thermal collapse of SAPO-34 molecular sieve towards a perfect glass, J. Non-Cryst. Solids 360, 36–40 (2013)

    Article  CAS  Google Scholar 

  • T. Palenta, S. Fuhrmann, G.N. Greaves, W. Schwieger, L. Wondraczek: Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass, J. Chem. Phys. 142, 084503 (2015)

    Article  CAS  Google Scholar 

  • S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M.P. Suh, J. Reedijk: Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013), Pure Appl. Chem. 85, 1715–1724 (2013)

    Article  CAS  Google Scholar 

  • D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa: Inherent proton conduction in a 2-D coordination network, J. Am. Chem. Soc. 134, 12780–12785 (2012)

    Article  CAS  Google Scholar 

  • D. Umeyama, S. Horike, M. Inukai, T. Itakura, S. Kitagawa: Reversible solid-to-liquid phase transition of coordination polymer crystals, J. Am. Chem. Soc. 137, 864–870 (2014)

    Article  CAS  Google Scholar 

  • W. Chen, S. Horike, D. Umeyama, N. Ogiwara, T. Itakura, C. Tassel, Y. Goto, H. Kageyama, S. Kitagawa: Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility, Angew. Chem. Int. Ed. 55, 5195–5200 (2016)

    Article  CAS  Google Scholar 

  • H. Ohtsu, T.D. Bennett, T. Kojima, D.A. Keen, Y. Niwa, M. Kawano: Amorphous–amorphous transition in a porous coordination polymer, Chem. Commun. 53, 7060–7063 (2017)

    Article  CAS  Google Scholar 

  • W. Li, Z. Wang, F. Deschler, S. Gao, R.H. Friend, A.K. Cheetham: Chemically diverse and multifunctional hybrid organic–inorganic perovskites, Nat. Rev. Mater. 2(16099), 1–18 (2016)

    Google Scholar 

  • D. Weber: CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur, Z. Naturforsch. B 33, 1443–1445 (1978)

    Article  Google Scholar 

  • M. Liu, M.B. Johnston, H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501, 395–398 (2013)

    Article  CAS  Google Scholar 

  • S. Sasaki, C. Prewitt, J.D. Bass: Orthorhombic perovskite CaTiO3 and CdTiO3: Structure and space group, Acta Crystallogr. C 43, 1668–1674 (1987)

    Article  Google Scholar 

  • D.B. Mitzi: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M \(=\) Ge, Sn, Pb), Chem. Mater. 29, 6200–6204 (1996)

    Google Scholar 

  • Y. Lee, D.B. Mitzi, P.W. Barnes, T. Vogt: Pressure-induced phase transitions and templating effect in three-dimensional organic–inorganic hybrid perovskites, Phys. Rev. B 68, 020103 (2003)

    Article  CAS  Google Scholar 

  • Y. Wang, X. Lu, W. Yang, T. Wen, L. Yang, X. Ren, L. Wang, Z. Lin, Y. Zhao: Pressure-induced phase transformation, reversible amorphization and anomalous visible light response in organolead bromide perovskite, J. Am. Chem. Soc. 137, 11144–11149 (2015)

    Article  CAS  Google Scholar 

  • X. Lü, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J.S. Smith, W. Yang, Y. Zhao, H. Xu, M.G. Kanatzidis, Q. Jia: Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization, Adv. Mater. 28, 8663–8668 (2016)

    Article  CAS  Google Scholar 

  • T. Ou, J. Yan, C. Xiao, W. Shen, C. Liu, X. Liu, Y. Han, Y. Ma, C. Gao: Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites, Nanoscale 8, 11426–11431 (2016)

    Article  CAS  Google Scholar 

  • F. Capitani, C. Marini, S. Caramazza, P. Postorino, G. Garbarino, M. Hanfland, A. Pisanu, P. Quadrelli, L. Malavasi: High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite, J. Appl. Phys. 119, 185901 (2016)

    Article  CAS  Google Scholar 

  • G.N. Greaves, S. Sen: Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56, 1–166 (2007)

    Article  CAS  Google Scholar 

  • H.E. Stanley (Ed.): Liquid Polyamorphism, Advances in Chemical Physics, Vol. 152 (Wiley, Hoboken 2013)

    Google Scholar 

  • W.H. Zachariasen: The atomic arrangement in glass, J. Am. Chem. Soc. 54, 3841–3851 (1932)

    Article  CAS  Google Scholar 

  • P. Adhikari, M. Xiong, N. Li, X. Zhao, P. Rulis, W.-Y. Ching: Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (aZIF), J. Phys. Chem. C 120, 15362–15368 (2016)

    Article  CAS  Google Scholar 

  • T.D. Bennett, A.L. Goodwin, M.T. Dove, D.A. Keen, M.G. Tucker, E.R. Barney, A.K. Soper, E.G. Bithell, J.-C. Tan, A.K. Cheetham: Structure and properties of an amorphous metal-organic framework, Phys. Rev. Lett. 104, 115503 (2010)

    Article  CAS  Google Scholar 

  • T.D. Bennett, D.A. Keen, J.-C. Tan, E.R. Barney, A.L. Goodwin, A.K. Cheetham: Thermal amorphization of zeolitic imidazolate frameworks, Angew. Chem. Int. Ed. 50, 3067–3071 (2011)

    Article  CAS  Google Scholar 

  • G.N. Greaves, K.L. Ngai: Reconciling ionic transport properties with atomic structure in oxide glasses, Phys. Rev. B 52, 6358–6380 (1995)

    Article  CAS  Google Scholar 

  • C. LeLosq, D.R. Neuville, W. Chen, P. Florian, D. Massiot, Z. Zhou, G.N. Greaves: Percolation channels: A universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep. 7, 16490 (2017)

    Article  CAS  Google Scholar 

  • H. Liu, R. Pan, W. Chen, Z. Shan, A. Qiao, J.W.E. Drewitt, L. Hennet, S. Jahn, D.P. Langstaff, H. Tao, G.N. Greaves, Y. Yue: From Molten calcium aluminates through phase transitions to cement phases, Nat. Commun., under review (2019)

    Google Scholar 

  • U. Ali, K.J.B.A. Karim, N.A. Buang: A review of the properties and applications of poly(methyl methacrylate) (PMMA), Polym. Rev. 55, 678–705 (2015)

    Article  CAS  Google Scholar 

  • J.M. Granadino-Roldán, N. Vukmirović, M. Fernández-Gómez, L.-W. Wang: The role of disorder on the electronic structure of conjugated polymers. The case of poly-2,5-bis(phenylethynyl)-1,3,4-thiadiazole, Phys. Chem. Chem. Phys. 13, 14500–14509 (2011)

    Article  CAS  Google Scholar 

  • A.W. Thornton, K.E. Jelfs, K. Konstas, C.M. Doherty, A.J. Hill, A.K. Cheetham, T.D. Bennett: Porosity in metal-organic framework glasses, Chem. Commun. 52, 3750–3753 (2016)

    Article  CAS  Google Scholar 

  • M. Reben, E. Golis, J. Filipecki, M. Sitarz, K. Kotynia, P. Jeleń, I. Grelowska: Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies, Spectrochim. Acta A 129, 643–648 (2014)

    Article  CAS  Google Scholar 

  • M. Zanatta, G. Baldi, R.S. Brusa, W. Egger, A. Fontana, E. Gilioli, S. Mariazzi, G. Monaco, L. Ravelli, F. Sacchetti: Mapping the Structure of a Glass Through its Voids, Heinz Maier-Leibniz Zentrum Applications Report (Heinz Maier-Leibniz Zentrum, Munich 2017)

    Google Scholar 

  • A. Qiao, T.D. Bennett, H. Tao, A. Krajnc, G. Mali, C.M. Doherty, A.W. Thornton, J.C. Mauro, G.N. Greaves, Y. Yue: A metal-organic framework with ultrahigh glass-forming ability, Sci. Adv. 4, eaao6827 (2018)

    Article  CAS  Google Scholar 

  • W. Ching: Microscopic calculation of localized electron states in an intrinsic glass, Phys. Rev. Lett. 46, 607–610 (1981)

    Article  CAS  Google Scholar 

  • R. Gaillac, P. Pullumbi, K.A. Beyer, K.W. Chapman, D.A. Keen, T.D. Bennett, F.X. Coudert: Liquid metal–organic frameworks, Nat. Mater. 16, 1149–1154 (2017)

    Article  CAS  Google Scholar 

  • R.L. McGreevy: Reverse Monte Carlo modelling, J. Phys. Condens. Matter 13, R877–R913 (2001)

    Article  CAS  Google Scholar 

  • W. Chen: A Simulation Study of the Formation of Tetrahedral Inorganic and Hybrid Glasses, Ph.D. Thesis (Aberystwyth University, Aberystwyth 2017)

    Google Scholar 

  • J. Du, A.N. Cormack: Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces, J. Am. Ceram. Soc. 88, 2532–2539 (2005)

    Article  CAS  Google Scholar 

  • M. Gao, A.J. Misquitta, L.H.N. Rimmer, M.T. Dove: Molecular dynamics simulation study of various zeolitic imidazolate framework structures, Dalton Trans. 45, 4289–4302 (2016)

    Article  CAS  Google Scholar 

  • J.C. Tan, B. Civalleri, A. Erba, E. Albanese: Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs ZIF-zni, CrystEngComm 17, 375–382 (2015)

    Article  CAS  Google Scholar 

  • M. Xiong, N. Li, G.N. Greaves, Y. Yue, X. Zhao: Quantum chemical calculations to elucidate the electronic and elastic properties of topologically equivalent metal organic frameworks, under review (2019)

    Google Scholar 

  • J.-C. Tan, T.D. Bennett, A.K. Cheetham: Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A. 107, 9938–9943 (2010)

    Article  CAS  Google Scholar 

  • J.-C. Tan, B. Civalleri, C.-C. Lin, L. Valenzano, R. Galvelis, P.-F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, A.K. Cheetham: Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework, Phys. Rev. Lett. 108, 095502 (2012)

    Article  CAS  Google Scholar 

  • G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson's ratio and modern materials, Nat. Mater. 10, 823–837 (2011)

    Article  CAS  Google Scholar 

  • C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper: Liquid alumina: Detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement, Phys. Rev. Lett. 86, 4839–4842 (2001)

    Article  CAS  Google Scholar 

  • L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara: Joint diffraction and modeling approach to the structure of liquid alumina, Phys. Rev. B 87(2), 024201 (2013)

    Article  CAS  Google Scholar 

  • G. Adam, J.H.J. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, Chem. Phys. 43, 139–146 (1965)

    CAS  Google Scholar 

  • Y. Yue: Characteristic temperatures of enthalpy relaxation in glass, J. Non-Cryst. Solids 354, 1112–1118 (2008)

    Article  CAS  Google Scholar 

  • J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. U.S.A. 106, 19780–19784 (2009)

    Article  CAS  Google Scholar 

  • R. Böhmer, C.A. Angell: Local and global relaxations in glass-forming materials. In: Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin 1994) pp. 11–54

    Chapter  Google Scholar 

  • C.A. Angell: Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1991)

    Article  Google Scholar 

  • C.A. Angell: Thermodynamics: Liquid landscape, Nature 393, 521–524 (1998)

    Article  CAS  Google Scholar 

  • L. Hennet, I. Pozdnyakova, A. Bytchkov, D.L. Price, G.N. Greaves, M. Wilding, S. Fearn: Development of structural order during supercooling of a fragile melt, J. Chem. Phys. 126, 074906 (2007)

    Article  CAS  Google Scholar 

  • W. Gotze, L. Sjogren: Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55, 241–376 (1992)

    Article  Google Scholar 

  • F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.H. Chen, H.E. Stanley: Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. U.S.A. 107, 22457–22462 (2010)

    Article  CAS  Google Scholar 

  • W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rep 43, 219–256 (1948)

    Article  CAS  Google Scholar 

  • C.A. Angell, C.T. Moynihan, M. Hemmati: ‘Strong' and ‘superstrong' liquids, and an approach to the perfect glass state via phase transition, J. Non-Cryst. Solids 274, 319–331 (2000)

    Article  CAS  Google Scholar 

  • J. Zhao, S.L. Simon, G.B. McKenna: Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems, Nat. Commun. 4, 1783 (2013)

    Article  CAS  Google Scholar 

  • M.D. Ediger, P. Harrowell: Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137, 080901 (2012)

    Article  CAS  Google Scholar 

  • S.V. Ketov, Y.H. Sun, S. Nachum, A. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer: Rejuvination of metallics glasses by non-affine thermal strain, Nature 524, 200–203 (2015)

    Article  CAS  Google Scholar 

  • A.L. Greer: New horizons for glass formation and stability, Nat. Mater. 14, 542–546 (2015)

    Article  CAS  Google Scholar 

  • A. Navrotsky, Z.R. Tian: Systematics in the enthalpies of formation of anhydrous aluminosilicate zeolites, glasses, and dense phases, Chem. Eur. J. 7, 769–774 (2001)

    Article  CAS  Google Scholar 

  • K.W. Chapman, G.J. Halder, P.J. Chupas: Pressure-induced amorphization and porosity modification in a metal-organic framework, J. Am. Chem. Soc. 131, 17546–17547 (2009)

    Article  CAS  Google Scholar 

  • T.D. Bennett, P. Simoncic, S.A. Moggach, F. Gozzo, P. Macchi, D.A. Keen, J.-C. Tan, A.K. Cheetham: Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4), Chem. Commun. 47, 7983–7985 (2011)

    Article  CAS  Google Scholar 

  • D. Umeyama, S. Horike, C. Tassel, H. Kageyama, Y. Higo, K. Hagi, N. Ogiwara, S. Kitagawa: Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity, APL Materials 2, 124401 (2014)

    Article  CAS  Google Scholar 

  • S. Cao, T.D. Bennett, D.A. Keen, A.L. Goodwin, A.K. Cheetham: Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling, Chem. Commun. 48, 7805–7780 (2012)

    Article  CAS  Google Scholar 

  • E.F. Baxter, T.D. Bennett, A.B. Cairns, N.J. Brownbill, A.L. Goodwin, D.A. Keen, P.A. Chater, F. Blanc, A.K. Cheetham: A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball milling, Dalton Trans. 45, 4258–4268 (2016)

    Article  CAS  Google Scholar 

  • D. Prochowicz, M. Franckevičius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński: Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: Characterization and the corresponding solar cell efficiency, J. Mater. Chem. A 3, 20772–20777 (2015)

    Article  CAS  Google Scholar 

  • C. Chakravarty, P.G. Debenedetti, F.H. Stillinger: Lindemann measures for the solid–liquid phase transition, J. Chem. Phys. 126, 204508 (2007)

    Article  CAS  Google Scholar 

  • Q.S. Meiit, K. Lu: Melting and superheating of crystalline solids: From bulk to nanocrystals, Prog. Mater. Sci. 52, 1175–1262 (2007)

    Article  CAS  Google Scholar 

  • F.A. Lindemann: The calculation of molecular natural frequencies, Phys. Z. 11, 609–612 (1910)

    CAS  Google Scholar 

  • J.J. Gilvarry: The Lindemann and Grüneisen laws, Phys. Rev. 102, 308–316 (1956)

    Article  CAS  Google Scholar 

  • J.-P. Poirier: Introduction to the Physics of the Earth's Interior, 2nd edn. (Cambridge Univ. Press, Cambridge 2000)

    Book  Google Scholar 

  • S.S. Nagarkar, S. Horike, T. Itakura, B. Le Ouay, A. Demessence, M. Tsujimoto, S. Kitagawa: Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal, Angew. Chem. Int. Ed. 56, 4976–4981 (2017)

    Article  CAS  Google Scholar 

  • A. Samanta, M.E. Tuckerman, T.-Q. Yu: W.E: Microscopic mechanisms of equilibrium melting of a solid, Science 346, 729–732 (2014)

    Article  CAS  Google Scholar 

  • G.N. Greaves, F. Meneau, O. Majérus, D. Jones, J. Taylor: Identifying the vibrations that destabilize crystals and characterize the glassy state, Science 308, 1299–1302 (2005)

    Article  CAS  Google Scholar 

  • M.R. Ryder, T.D. Bennett, C.S. Kelley, M.D. Frogley, G. Cinqueb, J.-C. Tan: Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy, Chem. Commun. 53, 7041–7044 (2017)

    Article  CAS  Google Scholar 

  • Y.C. Shen, P.C. Upadhya, E.H. Linfield, A.G. Davies: Temperature-dependent low-frequency vibrational spectra of purine and adenine, Appl. Phys. Lett. 82, 2350–2352 (2003)

    Article  CAS  Google Scholar 

  • M.R. Ryder, B. Civalleri, T.D. Bennett, S. Henke, S. Rudić, G. Cinque, F. Fernandez-Alonso, J.-C. Tan: Identifying the role of terahertz vibrations in metal-organic frameworks: From gate-opening phenomenon to shear-driven structural destabilization, Phys. Rev. Lett. 113, 215502 (2014)

    Article  CAS  Google Scholar 

  • L.M. Tolbert, K.M. Solntsev: Excited-state proton transfer: From constrained systems to “super” photo acids to superfast proton transfer, Acc. Chem. Res. 35, 19–27 (2002)

    Article  CAS  Google Scholar 

  • Y. Deng, E. Josberger, J. Jin, A.F. Rousdari, B.A. Helms, C. Zhong, M. Anantram, M. Rolandi: H+-type and OH--type biological protonic semiconductors and complementary devices, Sci. Rep. 3, 2481 (2013)

    Article  Google Scholar 

  • A.A. Petrov, N.A. Belich, A.Y. Grishko, N.M. Stepanov, S.G. Dorofeev, E.G. Maksimov, A.V. Shevelkov, S.M. Zakeeruddin, M. Graetzel, A.B. Tarasov, E.A. Goodilin: A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts, Mater. Horiz. 4, 625–632 (2017)

    Article  CAS  Google Scholar 

  • Y. Hu, H. Kazemian, S. Rohani, Y. Huang, Y. Song: In situ high pressure study of ZIF-8 by FTIR, Chem. Commun. 47, 12694–12696 (2011)

    Article  CAS  Google Scholar 

  • G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana: Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study, J. Phys. Chem. A 117, 11006–11012 (2014)

    Article  CAS  Google Scholar 

  • S.A. Moggach, T.D. Bennett, A.K. Cheetham: The effect of pressure on ZIF-8: Increasing pores size with pressure and the formation of a high pressure phase at 1.47 GPa, Angew. Chem. 121, 7221–7223 (2009)

    Article  Google Scholar 

  • A.U. Ortiz, A. Boutin, A.H. Fuchs, F.C. Coudert: Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: Mechanical instability due to shear mode softening, J. Phys. Chem. Lett. 4, 1861–1865 (2013)

    Article  CAS  Google Scholar 

  • B. Coasne, J. Haines, C. Levelut, O. Cambon, M. Santoro, F. Gorelli, G. Garbarino: Enhanced mechanical strength of zeolites by adsorption of guest molecules, Phys. Chem. Chem. Phys. 13, 20096–20099 (2011)

    Article  CAS  Google Scholar 

  • E. Boldyreva: Mechanochemistry of inorganic and organic systems: What is similar, what is different?, Chem. Soc. Rev. 42, 7719–7738 (2013)

    Article  CAS  Google Scholar 

  • E.C. Spencer, R.J. Angel, N.L. Ross, B.E. Hanson, J.A.K. Howard: Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: A high-pressure single-crystal x-ray diffraction study, J. Am. Chem. Soc. 131, 4022–4026 (2009)

    Article  CAS  Google Scholar 

  • S.R. Madsen, S.A. Moggach, J. Overgaard, B.B. Iversen: Anisotropic compressibility of the coordination polymer emim[Mn(btc)], Acta. Crystallogr. B 72, 389–394 (2016)

    Article  CAS  Google Scholar 

  • A.D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P.A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S.A.J. Kimber, P. Lazić, O. Magdysyuk, R.E. Dinnebier, I. Halasz, T. Friščić: In situ x-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework, Nat. Commun. 6, 6662 (2015)

    Article  CAS  Google Scholar 

  • C. Orellana-Tavra, E.F. Baxter, T. Tian, T.D. Bennett, N.K.H. Slater, A.K. Cheetham: Amorphous metal–organic frameworks for drug delivery, Chem. Commun. 51, 13878–13881 (2015)

    Article  CAS  Google Scholar 

  • E. Rapoport: Model for melting point maxima at high pressure, J. Chem. Phys. 46, 2891–2895 (1967)

    Article  CAS  Google Scholar 

  • P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, G.N. Greaves: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory, J. Phys. Condens. Matter 19, 415101 (2007)

    Article  CAS  Google Scholar 

  • E.G. Ponyatovsky, O.I. Barkolov: Pressure-induced amorphous phases, Mater. Sci. Rep. 8, 147–191 (1992)

    Article  Google Scholar 

  • F. Meneau: Studies of Amorphisation in Zeolites, Ph.D. Thesis (Univ. Wales, Aberystwyth 2003)

    Google Scholar 

  • G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, O. Majérus, Q. Van Vu, C.J. Benmore, R. Weber, C.M. Martin, L. Hennet: Detection of first order liquid–liquid phase transitions in yttrium oxide–aluminium oxide melts, Science 322, 566–570 (2008)

    Article  CAS  Google Scholar 

  • C.A. Angell: Glass formation from liquids and biopolymers, Science 267, 1924–1935 (1995)

    Article  CAS  Google Scholar 

  • K.L. Ngai, G.N. Greaves, C.T. Moynihan: Correlation between the activation energies for ionic conductivity for short and long time scales and the Kohlrausch stretching parameter \(\beta\) for ionically conducting solids and melts, Phys. Rev. Lett. 80, 1018–1021 (1998)

    Article  CAS  Google Scholar 

  • D.J. Wales: Energy Landscapes with Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, Cambridge 2003)

    Google Scholar 

  • A. Heuer: Properties of a glass-forming system as derived from its potential energy landscape, Phys. Rev. Lett. 78, 4051–4054 (1997)

    Article  CAS  Google Scholar 

  • J.J. Lewandowski, W.H. Wang, A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77–87 (2005)

    Article  CAS  Google Scholar 

  • V.N. Novikov, A.P. Sokolov: Poisson's ratio and the fragility of glass-forming liquids, Nature 431, 961–963 (2004)

    Article  CAS  Google Scholar 

  • V.N. Novikov, Y. Ding, A.P. Sokolov: Correlation of fragility of supercooled liquids with elastic properties of glasses, Phys. Rev. E 71, 061501 (2005)

    Article  CAS  Google Scholar 

  • O. Mishima, L.D. Calvert, E. Whalley: ‘Melting ice' I at 77 K and 10 kbar: A new method of making amorphous materials, Nature 310, 393–395 (1980)

    Article  Google Scholar 

  • O. Mishima: Polyamorphism in water, Adv. Chem. Phys. 152, 355–372 (2013)

    CAS  Google Scholar 

  • M.B. Kruger, R. Jeanloz: Memory glass: An amorphous material formed from AlPO4, Science 249, 647–649 (1990)

    Article  CAS  Google Scholar 

  • S.M. Sharma, S.K. Sikka: Pressure-induced amorphization of materials, Prog. Mater. Sci. 40, 1–77 (1996)

    Article  CAS  Google Scholar 

  • P. Richet, P. Gillet: Pressure-induced amorphization of minerals: A review, Eur. J. Mineral. 9, 907–933 (1997)

    Article  CAS  Google Scholar 

  • S.D. Stranks, H.J. Snaith: Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nanotechnol. 10, 391–402 (2015)

    Article  CAS  Google Scholar 

  • I.S. Klein, C.A. Angell: Excess thermodynamic properties of glass-forming liquids: The rational scaling of heat capacities, and the thermodynamic fragility dilemma resolved, J. Non-Cryst. Solids 451, 116–123 (2016)

    Article  CAS  Google Scholar 

  • S. Aasland, P.F. McMillan: Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3, Nature 369, 633 (1994)

    Article  CAS  Google Scholar 

  • W. Anderson: Through the glass lightly, Science 267, 1615–1616 (1995)

    Article  CAS  Google Scholar 

  • J.K.H. Shimizu, J.M. Taylor, S.R. Kim: Proton conduction with metal-organic frameworks, Science 341, 354–355 (2013)

    Article  CAS  Google Scholar 

  • S.R. Kim, K.W. Dawson, B.S. Gelfand, J.M. Taylor, G.K.H. Shimizu: Enhancing proton conduction in a metal-organic framework by isomorphous ligand replacement, J. Am. Chem. Soc. 135, 963–966 (2013)

    Article  CAS  Google Scholar 

  • S. Pili, S.P. Argent, C.G. Morris, P. Rought, V. García-Sakai, I.P. Silverwood, T.L. Easun, M. Li, M.R. Warren, C.A. Murray, C.C. Tang, S. Yang, M. Schröder: Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere”, J. Am. Chem. Soc. 138, 6352–6355 (2016)

    Article  CAS  Google Scholar 

  • W. Li, A. Thirumurugan, P.T. Barton, Z. Lin, S. Henke, H.H.-Y. Yeung, M.T. Wharmby, E.G. Bithell, C.J. Howard, A.K. Cheetham: Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture, J. Am. Chem. Soc. 136, 7801–7804 (2014)

    Article  CAS  Google Scholar 

  • X. Wang, L. Gan, S. Zhang, S. Gao: Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials, Inorg. Chem. 43, 4615–4625 (2004)

    Article  CAS  Google Scholar 

  • P. Jain, V. Ramachandran, R.J. Clark, H.D. Zhou, B.H. Toby, N.S. Dalal, H.W. Kroto, A.K. Cheetham: Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture, J. Am. Chem. Soc. 131, 13625–13627 (2009)

    Article  CAS  Google Scholar 

  • T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen: Hybrid organic–inorganic perovskites: Low cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater. 1, 15007 (2016)

    Article  CAS  Google Scholar 

  • R. Shang, S. Chen, Z. Wang, S. Gao: Metal-organic frameworks: Functional magnetic materials with formate. In: Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. by R.A. Scott (Wiley, Hoboken 2014) pp. 1–23

    Google Scholar 

  • I.A. Baburin, S. Leoni, G. Seifert: Enumeration of not-yet-synthesized zeolitic zinc imidazolate MOF networks: A topological and DFT approach, J. Phys. Chem. B 112, 9437–9443 (2008)

    Article  CAS  Google Scholar 

  • C.S. Cundy, P.A. Cox: Hydrothermal synthesis of zeolite: History and development from the earliest days to the present time, Chem. Rev. 103, 663–702 (2003)

    Article  CAS  Google Scholar 

  • F.E. Luborsky: Perspective on applications of amorphous alloys in magnetic devices. In: Amorphous Magnetism II, ed. by R.A. Levy, R. Hasegawa (Plenum, Boston 1977)

    Google Scholar 

  • C.D. Marshall, J.A. Speth, S.A. Payne: Induced optical absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica, J. Non-Cryst. Solids 212, 59–73 (1997)

    Article  CAS  Google Scholar 

  • G. Müller, S. Kalbitzer: The cystalline-to-amorphous transition in ion-bombarded silicon, Philos. Mag. 41, 307–325 (1980)

    Article  Google Scholar 

  • G.N. Greaves, A.J. Dent, B.R. Dobson, S. Kalbitzer, S. Pizzini, G. Müller: Environments of ion-implanted As and Ga impurities in amorphous silicon, Phys. Rev. B 45, 6517–6533 (1992)

    Article  CAS  Google Scholar 

  • N. Bordes, R.C. Ewing: Ion-beam and electron-beam induced amorphization of berlinite (AlPO4), Mater. Res. Soc. Symp. Proc. 373, 395–400 (1996)

    Article  Google Scholar 

  • C. Wiktor, M. Meledina, S. Turner, O.I. Lebedevd, S. Turner, R.A. Fischer: Transmission electron microscopy on metal–organic frameworks—A review, J. Mater. Chem. A 5, 14969–14989 (2017)

    Article  CAS  Google Scholar 

  • C. Wiktor, S. Turner, D. Zacher, R.A. Fischer, G. Van Tendeloo: Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature, Microporous Mesoporous Mater. 162, 131–135 (2012)

    Article  CAS  Google Scholar 

  • W. Bras, H. Stanley: Unexpected effects in non-crystalline materials exposed to x-ray radiation, J. Non-Cryst. Solids 451, 153–160 (2016)

    Article  CAS  Google Scholar 

  • E.D. Zanotto, D.R. Cassar: The microscopic origin of the extreme glass-forming ability of Albite and B2O3, Sci. Rep. 7, 43022 (2017)

    Article  Google Scholar 

  • L.M. Wang, C.A. Angell, R. Richert: Fragility and thermodynamics in nonpolymeric glass-forming liquids, J. Chem. Phys. 125, 074505 (2006)

    Article  CAS  Google Scholar 

  • J.D. Stevenson, P.G. Wolynes: Thermodynamic-kinetic correlations in supercooled liquids: A critical survey of experimental data and predictions of the random first-order transition theory of glasses, J. Phys. Chem. B 109, 15093–15097 (2005)

    Article  CAS  Google Scholar 

  • W.H. Wang: Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys. 99, 093506 (2006)

    Article  CAS  Google Scholar 

  • J. Orava, A.L. Greer: Fast and slow crystal growth kinetics in glass-forming melts, J. Chem. Phys. 140, 214504 (2014)

    Article  CAS  Google Scholar 

  • J. Orava, A.L. Greer: Fast crystal growth in glass-forming liquids, J. Non-Cryst. Solids 451, 94–100 (2016)

    Article  CAS  Google Scholar 

  • J.S. Chen, R.H. Jones, S. Natarajan, M.B. Hursthouse, J.M. Thomas: A novel open-framework cobalt phosphate containing a tetrahedrally coordinated Cobalt(II) center: CoPO4\(\cdot\)0.5C2H10N2, Angew. Chem. Int. Ed. 33, 639–640 (1994)

    Article  Google Scholar 

  • L. Zong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao: Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512, 177–180 (2014)

    Article  CAS  Google Scholar 

  • P. Richet, Y. Bottinga: Rheology and configurational entropy of silicate melts, Rev. Mineral. 32, 67–93 (1995)

    CAS  Google Scholar 

Download references

Acknowledgements

Stimulating discussions over time with Yuanzheng Yue, Omar M. Yaghi, C. Austen Angell, Alex Navrotsky, A. Lindsey Greer, Lothar Wondraczek, Gopinathan Sankar, Sabiasachi Sen, Tanguy Rouxel, Paul F. McMillan, Daniel R. Neuville, Gregory Chass, Wim Bras, and C. Richard Catlow are all gratefully acknowledged. The following institutions are also thanked for their support: Wuhan University of Technology (Strategic Scientist), Aberystwyth University (Research Professorship), University College London (Honorary Professor in Chemistry), University of Cambridge (Distinguished Research Fellow) and Sidney Sussex College, Cambridge (Research Fellowship). The author is also grateful to the oncologist Elin Jones and her dedicated and caring chemotherapy team at Bronglais Hospital, Aberystwyth, UK. He also acknowledges the infinite patience and unstinting support of his wife Jenny.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Neville Greaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Greaves, G.N. (2019). Hybrid Glasses: From Metal Organic Frameworks and Co-ordination Polymers to Hybrid Organic Inorganic Perovskites. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_21

Download citation

Publish with us

Policies and ethics