Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Halide glasses, formed from a basis of fluorine, chlorine, bromine, or iodine, are interesting materials because their transparency range can span from the ultraviolet all the way into the infrared portion of the spectrum. Halides are, in general, conditional glass formers, and great experimental care must be taken in producing fully amorphous materials. In addition, because of their more ionic bonding, they exhibit much greater sensitivity to moisture than other glasses.

In this chapter we will begin with a discussion of the differences between ionic and covalent bonding in glassy materials, which is a critical consideration in designing halide glass types, and also provides a strong foundation for understanding their physical and optical properties. Among the halide materials, the main focus in this chapter is the fluoride glasses, which offer the best forming ability and have been the most widely commercialized. The rare earth solubility of halides is discussed in depth, as the halides have historically found some of their greatest use in fiber laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.M. Goldschmidt: Geochemische Verteilungsgesetze der Elemente, Skr. Utg. Nor. Vidensk. Akad. Oslo 8, 127 (1926)

    Google Scholar 

  • A.G. Pincus: Note on low refration and dispersion of beryllium fluoride glass, J. Opt. Soc. Am. 35(1), 92–92 (1945)

    Article  Google Scholar 

  • M. Imaoka, S. Mizusawa: Studies on fluoride glass. I. BeF2-LiF, NaF, KF system, J. Ceram. Assoc. Jpn. 61(1), 13–14 (1953)

    CAS  Google Scholar 

  • D.M. Roy, R. Roy, E.F. Osborn: Phase relations and structural phenomena in the fluoride-model systems LiF-BeF2 and NaF-BeF2, J. Am. Ceram. Soc. 33(3), 85–90 (1950)

    Article  CAS  Google Scholar 

  • S. Kuan-Han, M.L. Huggins: Optical glass to fluoride, FR Patent 919006 (1947) in French

    Google Scholar 

  • E. Thilo, H.-A. Lehmann: Über das System LiF-BeF2 und seine Beziehungen zum System MgO-SiO2, Z. Anorg. Allgem. Chem. 258(3–5), 332–355 (1949)

    Article  CAS  Google Scholar 

  • M.P. Borzenkova, A.V. Novoselova, P.Y. Simanov, V.I. Chernykh, E.I. Yarembash: Thermal and phase x-ray analyses of the system KF-BeF2, Zh. Neorg. Khim. 1(9), 2071–2082 (1956)

    CAS  Google Scholar 

  • M.S. Genrikh, L.I. Ignatjeva: Fluoride glasses, Opt. Mekh. Prom. 6, 46–51 (1957)

    Google Scholar 

  • W. Vogel, K. Gerth: Zur Struktur von Fluoridgläsern. III. Teil Die ternären Alkali-Erdalkali-Berylliumfluorid-Glassysteme MgF2, CaF2, SrF2, BaF2-KF-BeF2, MgF2, CaF2, SrF2-NaF-BeF2, MgF2-LiF-BeF2, Silikattechnik 9(11), 495–501 (1958)

    CAS  Google Scholar 

  • T. Izumitani: Fundamental Studies on New Optical Glasses (Rep. Governm. Ind. Res. Inst., Osaka 1958), No. 311

    Google Scholar 

  • P.F. De Paolis: Infrared transmitting fluoride glass, US Patent 2819977 (1958)

    Google Scholar 

  • K.S. Evstropiev, A.K. Yakhkind, M.S. Genrikh: Commercial and experimental glasses with new optical constants, Infor. Byull. GOI 2(37), 24 (1959)

    Google Scholar 

  • B.F. Warren, C.F. Hill: The structure of vitreous BeF2, Z. Kristallogr. 89, 481 (1934)

    CAS  Google Scholar 

  • S. Kuan-Han, M.L. Huggins: Berylium boro-phosphate glass, US Patent 2414661 (1947)

    Google Scholar 

  • S. Kuan-Han, M.L. Huggins: Fluoride glasses, US Patent 2511224 (1950)

    Google Scholar 

  • S. Kuan-Han, M.L. Huggins: Oxyfluoride glasses, US Patent 2578325 (1951)

    Google Scholar 

  • S. Kuan-Han, M.L. Huggins: Improvements in the manufacture of glass, GB Patent 606509 (1948)

    Google Scholar 

  • S. Kuan-Han: Method of making fluoride glass, US Patent 2466507 (1949)

    Google Scholar 

  • P.F. De Paolis: New optical glasses, FR Patent 1151911 (1958)

    Google Scholar 

  • P.F. De Paolis: Improved glass, GB Patent 792402 (1958)

    Google Scholar 

  • P.F. De Paolis: Fluoride glass, DE Patent 1056797 (1959)

    Google Scholar 

  • M. Poulain, M. Poulain, J. Lucas: Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3, Mater. Res. Bull. 10, 243 (1975)

    Article  CAS  Google Scholar 

  • N.I. Grebenshchikova, G.T. Petrovskii: Kinetic of dissolution of some fluoro-berillate glasses in water, Zh. Prikl. Khim. 36(6), 1199–1204 (1963)

    Google Scholar 

  • A.A. Margaryan, K.S. Evstropiev: Problems of chemical durability of fluor-berrylate glasses, Neorg. Mater. 4(1), 116–120 (1968)

    CAS  Google Scholar 

  • G.P. Nikolina, V.D. Khalilev, K.S. Evstropiev: Moisture resistance and crystallization of fluoroberyllate glasses, Neorg. Mater. 6(3), 582–584 (1970)

    CAS  Google Scholar 

  • C.F. Cline, D.D. Kingman, M.J. Weber: Durability of beryllium fluoride glasses in water: Comparison with other glasses and crystals, J. Non-Cryst. Solids 33(3), 417–421 (1979)

    Article  CAS  Google Scholar 

  • C.J. Simmons, H. Sutter, J.H. Simmons, D.C. Tran: Aqueous corrosion studies of a fluorozirconate glass, Mater. Res. Bull. 17(9), 1203–1210 (1982)

    Article  CAS  Google Scholar 

  • C.J. Simmons, J.H. Simmons: Chemical durability of fluoride glasses: I. Reaction of fluorozirconate glasses with water, J. Am. Ceram. Soc. 69(9), 661–669 (1986)

    Article  CAS  Google Scholar 

  • S. Mitachi: Chemical durability of fluoride glasses in the BaF2-GdF3-ZrF4 system, Phys. Chem. Glasses 24(6), 146–149 (1983)

    CAS  Google Scholar 

  • R.H. Doremus, D. Murphy, N.P. Bansal, W.A. Lanford, C. Burman: Reaction of zirconium fluoride glass with water: Kinetics of dissolution, J. Mater. Sci. 20(12), 4445–4453 (1985)

    Article  CAS  Google Scholar 

  • A.B. Seddon, W.A. Shah: Chemical durability of infrared transmitting CdF2-BaCl2 and CdF2-BaCl2-NaCl glasses, J. Non-Cryst. Solids 128(2), 183–190 (1991)

    Article  CAS  Google Scholar 

  • G. Zhang, B. Friot, M. Poulain: New gallium and indium based fluoride glasses, J. Non-Cryst. Solids 213/214, 6–10 (1997)

    Article  Google Scholar 

  • B.J. Costa, A. Soufiane, Y. Messaddeq: New compositions of fluoroindate glasses with higher chemical resistance, Quim. Nova 21(3), 370–371 (1998)

    Article  Google Scholar 

  • G. Yanyan, G. Guojun, L. Ming, H. Lili, Z. Junjie: Er3+-doped fluoro-tellurite glass: A new choice for 2.7-\(\upmu\)m lasers, Mater. Lett. 80, 56–58 (2012)

    Article  CAS  Google Scholar 

  • H.E. Stockinger (Ed.): Beryllium: Its Industrial Hygiene Aspects (Academic, New York 1966)

    Google Scholar 

  • T. Ashida, A. Olada, T. Wakasugi, K. Jadono: Glass formation and properties of glasses based on Ga2S3-Sb2S3 systems incorporated with CsX (X = Cl, Br, I) and AgCl, J. Ceram. Soc. Jpn. 126(6), 452–461 (2018)

    Article  CAS  Google Scholar 

  • C. Struebing, M.B. Beckert, J.H. Nadler, B. Kahn, B. Wagner, Z. Kang: Optimization of a gadolinium-rich oxyhalide glass scintillator for gamma ray spectroscopy, J. Am. Ceram. Soc. 101(3), 1116–1121 (2018)

    Article  CAS  Google Scholar 

  • X. Huang, Q. Jiao, C. Lin, T. Xu, H. Ma, X. Zhang, S. Dai: Compositional dependence of the optical properties of novel Ga-Sb-S-XI (XI = PbI2, CsI, AgI) infrared chalcogenide, J. Am. Ceram. Soc. 101(2), 749–755 (2018)

    Article  CAS  Google Scholar 

  • H. Okamoto, K. Kasuga, Y. Kubota, N. Nishimura, H. Kawamoto, K. Miyauchi, Y. Shimotsuma, K. Miura: White emission of Yb2+: Fluoride glasses efficiently excited with near-UV light, Opt. Express 21(19), 22043–22052 (2013)

    Article  CAS  Google Scholar 

  • T. Suzuki, Y. Iwata, K. Nogata, S. Mizuno, H. Ito, K. Hasegawa, Y. Ohishi: Optical characterization of Er-doped glasses for solar-pumped laser applications, Proc. SPIE 8621, 86211G-1 (2013)

    Article  Google Scholar 

  • M. Olivier, J.-L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J.N. Coulon, A. Braud, J.-L. Adam, V. Nazabal: Optical amplification of Pr3+–doped ZBLA channel waveguides for visible laser emission, Opt. Express 20(22), 25064–25070 (2012)

    Article  CAS  Google Scholar 

  • H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini: Spectroscopic properties of rare earth ions in heavy metal oxide and phosphate containing glassses, Proc. SPIE 3622, 19–30 (1999)

    Article  CAS  Google Scholar 

  • A. Florez, S.L. Oliveira, M. Florez, L.A. Gomez, L.A.O. Nunes: Spectroscopic characterization of Ho3+ ion–doped fluoride glass, J. Alloy. Compd. 418(1/2), 238–242 (2006)

    Article  CAS  Google Scholar 

  • J.D. Mackenzie, J. Heo: Chalochalide glasses. I. Synthesis and properties of Ge-S-Br and Ge-S-I glasses, J. Non-Cryst. Solids 111, 29–35 (1989)

    Article  Google Scholar 

  • J.S. Sanghera, J. Heo, J.D. Mackenzie: Chalcohalide glasses, J. Non-Cryst. Solids 103, 155–178 (1988)

    Article  CAS  Google Scholar 

  • W.H. Zachariesen: The structure of network glasses, J. Am. Chem. Soc. 545, 3480 (1932)

    Google Scholar 

  • A.C. Wright, A.G. Clare, G. Etherington, R.N. Sinclair, S.A. Brawer, M.J. Weber: A neutron diffraction and molecular dynamics investigation of the structure of vitreous beryllium fluoride, J. Non-Cryst. Solids 111, 139–152 (1989)

    Article  CAS  Google Scholar 

  • A.G. Clare, A.C. Wright, R.N. Sinclair: A comparison of the structural role of Na+ network modifying cations in sodium silicate and sodium fluoroberyllate glasses, J. Non-Cryst. Solids 213/214, 321–324 (1997)

    Article  Google Scholar 

  • W. Vogel: Chemistry of Glass (The American Ceramic Society, Westerville 1985)

    Google Scholar 

  • J.E. Shelby: Introduction to Glass Science and Technology, 2nd edn. (Royal Society of Chemistry, Cambridge 2005)

    Google Scholar 

  • W. Vogel, K. Gerth: Über Modellsilikatgläser und ihre Konstitution. Die Glassysteme LiF-BeF2, NaF-BeF2, KF-BeF2 und RbF-BeF2, Glastech. Ber. 31(1), 15–28 (1958)

    CAS  Google Scholar 

  • W. Vogel, K. Gerth: Zur Struktur von Fluoridgläsern. II. Teil. Die Glassysteme MgF2-BeF2, CaF2-BeF2 und SrF2-BeF2, Silikattechnik 9(8), 353–358 (1958)

    CAS  Google Scholar 

  • P. Klocek, M. Roth, R.D. Rock: Chalcogenide glass optical fibers and image bundles: Properties and applications, Opt. Eng. 26(2), 88–95 (1987)

    Article  CAS  Google Scholar 

  • M.J. Weber, C.F. Cline, W.L. Smith, D. Milam, D. Heiman, R.W. Hellwarth: Measurements of the electronic and nuclear contributions to the nonlinear refractive index of beryllium fluoride glasses, Appl. Phys. Lett. 32(7), 403–405 (1978)

    Article  CAS  Google Scholar 

  • M.J. Weber: Handbook of Optical Materials (CRC, Boca Raton 2003) p. 241

    Google Scholar 

  • A.G. Pincus: Glass compositions and method of making same, US Patent 2901363 (1959)

    Google Scholar 

  • C.M. Baldwin, J.D. Mackenzie: Preparation and properties of water-free vitreous beryllium fluoride, J. Non-Cryst. Solids 31, 441–445 (1979)

    Article  CAS  Google Scholar 

  • N.A. Bell: Beryllium halides and pseudohalides, Adv. Inorg. Chem. Radiochem. 14, 255 (1972)

    Article  CAS  Google Scholar 

  • J. Schroeder: Examples from fluorine chemistry and possible industrial applications, Philips Tech. Rev. 26, 111 (1965)

    Google Scholar 

  • C.E. Smith, R.K. Brow, L. Montagne, B. Revel: The structure and properties of zinc aluminophosphate glasses, J. Non-Cryst. Solids 386, 105–114 (2014)

    Article  CAS  Google Scholar 

  • J. Massera, K. Bourhis, L. Petit, M. Couzi, L. Hupa, M. Hupa, J.J. Videau, T. Cardinal: Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions, J. Phys. Chem. Solids 74(1), 121–127 (2013)

    Article  CAS  Google Scholar 

  • B.G. Aitken, G.H. Beall, J.E. Dickinson: Cuprous pyrophosphate glasses, US Patent 55299 (1996)

    Google Scholar 

  • A.A. Margaryan: Hydrolytic durability of fluoroberyllate glasses with additions of rare-earth fluorides, Arm. Khim. Zh. 20(4), 270–273 (1967)

    CAS  Google Scholar 

  • A.A. Margaryan: Some properties of glasses synthesized on the base of berillium fluoride. In: Stekloobraz. Sist. Nov. Stekl. Osn. Moskva (1971) pp. 300–303

    Google Scholar 

  • T. Izumitani, R. Terai, H. Hamamura: On the durability of the glass containing fluorides to water, Bull. Osaka Ind. Res. Inst. 7(4), 225–231 (1956)

    CAS  Google Scholar 

  • T. Izumitani, T. Yamashita, M. Tokida, K. Miura, H. Tajima: New fluoroaluminate glasses and their crystallization tendencies and physical-chemical properties, Mater. Sci. Forum 19/20(I), 19–26 (1987)

    Article  Google Scholar 

  • Y. Chunlei, Z. Junjie, W. Guonian, J. Zhonghong: Effects of chloride substitution on the chemical and physical properties and the crystallization behavior in heavy metal fluoride glasses, J. Alloy. Compd. 461(1/2), 378–381 (2008)

    Google Scholar 

  • J. Kai, Y. Lin, L. Wuju, Y. Qihua: Study on preparation and properties of AlF3-REF3-AEF2 glass system. In: Proc. XVIIth Int. Congr. Glass, Beijing, Vol. 5 (1995) pp. 698–703

    Google Scholar 

  • J.J. Cheng, M.Y. Liu: Formation and properties of ZrF4-BaF2-SrF2(CaF2)-LaF3 system glasses, Mater. Sci. Forum 67/68, 91–96 (1991)

    Article  Google Scholar 

  • A.B. Seddon, W.A. Shah: Aqueous corrosion of halide glasses, Mater. Sci. Forum 32/33, 255–260 (1988)

    Article  Google Scholar 

  • A.B. Seddon, W.A. Shah, A.G. Clare, J.M. Parker: The effect of NaF on the crystallization of ZBLAN glasses, Mater. Sci. Forum 19/20(2), 465–474 (1987)

    Article  Google Scholar 

  • G.H. Frischat, I. Overbeck: Chemical durability of fluorozirconate glasses against aqueous solution, Mater. Sci. Forum 5, 299–304 (1985)

    Article  CAS  Google Scholar 

  • C.J. Simmons: Chemical durability of fluoride glasses: III. The effect of solution pH, J. Am. Ceram. Soc. 70(9), 654–661 (1987)

    Article  CAS  Google Scholar 

  • C.J. Simmons, J. Guery, D.G. Chen, C. Jacoboni: Leaching behavior of heavy metal fluoride glasses, Mater. Sci. Forum 5, 329–334 (1985)

    Article  CAS  Google Scholar 

  • D. Ravaine, G. Perera: Corrosion studies of various heavy-metal fluoride glasses in liquid water: Application to fluoride-ion-selective electrode, J. Am. Ceram. Soc. 69(12), 852–857 (1986)

    Article  CAS  Google Scholar 

  • A. Elyamani, M. Poulain, S.J. Saggese, G.H. Sigel: Properties of chlorofluorozirconate glasses, J. Non-Cryst. Solids 119(2), 187–194 (1990)

    Article  CAS  Google Scholar 

  • A. Soufiane, M. Poulain: Influence of composition on glass properties in the quaternary system ZrF4-BaF2-ThF4-AlF3, J. Non-Cryst. Solids 140(1–3), 62–68 (1992)

    Article  Google Scholar 

  • J.M. Parker, A.B. Seddon, G.N. Ainsworth, A.G. Clare: Crystallisation studies in the ZrF4-BaF2-NaF system, Phys. Chem. Glasses 27, 219 (1986)

    CAS  Google Scholar 

  • J.M. Parker, A.G. Clare, A.B. Seddon: Crystallisation studies of fluorozirconate glasses, Mater. Sci. Forum 5, 257–262 (1986)

    Google Scholar 

  • J.M. Parker, A.B. Seddon, A.G. Clare: Crystallisation studies in the ZrF4-BaF2AlF3-LaF3-NaF system, Phys. Chem. Glasses 28, 4 (1987)

    CAS  Google Scholar 

  • S.F. Carter, P.W. France, M.W. Moore, J.M. Parker, A.G. Clare: The crystallisation of a ZrF4-BaF2-LaF3-AlF3-NaF-PbF2 core glass for infrared fibers, Phys. Chem. Glasses 28, 188–195 (1987)

    CAS  Google Scholar 

  • D. Whittaker: The Preparation and Characterization of Fluoroaluminate Glasses Doped with Transition Metal and Rare Earth Ions, Ph.D. Thesis (Alfred University, Alfred 1991)

    Google Scholar 

  • A. Kucuk, A.G. Clare: Optical properties of cerium and europium doped fluoroaluminate glasses, Opt. Mater. 13, 279–287 (1999)

    Article  CAS  Google Scholar 

  • A.C. Wright, A.G. Clare, G. Etherington, R.N. Sinclair, S.A. Brawer, M.J. Weber: The structure of vitreous NaF-DyF3-BeF2: A neutron diffraction and molecular dynamics study, Mat. Sci. Forum 19/20, 157–160 (1987)

    Article  Google Scholar 

  • V. Fortin, M. Bernier, J. Carrier, R. Valee: Fluoride glass Raman fiber laser at 2185 nm, Opt. Lett. 36(21), 4152–4154 (2011)

    Article  CAS  Google Scholar 

  • S. Ohe: Computer Aided Data Book of Vapor Pressure (Data Book, Tokyo 1976)

    Google Scholar 

  • M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud: JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985)

    Google Scholar 

  • S. Cantor: Vapor pressures of BeF2 and NiF2, J. Chem. Eng. Data 10, 237 (1965)

    Article  CAS  Google Scholar 

  • S. Cantor, R. Newton, W. Grimes, F. Blankenship: Vapor pressures and derived thermodynamic information for the system RbF-ZrF4, J. Phys. Chem. 62(1), 96–99 (1958)

    Article  CAS  Google Scholar 

  • K.A. Sense, M.J. Snyder, J.W. Clegg: Vapor Pressures of Beryllium Fluoride and Zirconium Fluoride (US Atomic Energy Commission Technical Information Services, Tennessee 1953)

    Google Scholar 

  • K.A. Sense, M.J. Snyder, R.B.J. Filbert: The vapor pressure of zirconium fluoride, J. Phys. Chem. 58(11), 995–996 (1954)

    Article  CAS  Google Scholar 

  • M. Benedict, T.H. Pigfors, H.W. Levi: Nuclear Chemical Engineering (McGraw-Hill, New York 1981)

    Google Scholar 

  • Y. Koreneo, I. Sorokin, N. Chirina, A.V. Novoselo: Vapor-pressure of hafnium tetrafluoride, J. Inorg. Chem. 17(5), 1195 (1972)

    Google Scholar 

  • A. Weir: Artemis (Random House, New York 2017)

    Google Scholar 

  • S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17(21), 776 (1981)

    Article  Google Scholar 

  • X. Zhu, N. Peyghambarian: High-power ZBLAN glass fiber lasers: Review and prospect, Adv. Optoelectron. (2010), https://doi.org/10.1155/2010/501956

    Article  Google Scholar 

  • T. Qir, L. Li, A. Schulzgen, V.L. Temyanko, T. Luo, S. Jiang, A. Mafi, J.V. Moloney, N. Peyghambarian: Generation of 9.3-W multimode and 4-W single–mode output from 7-cm short fiber lasers, IEEE Photonic Technol. Lett. 16(12), 2592–2594 (2004)

    Article  CAS  Google Scholar 

  • A. Schulzgen, L. Li, V.L. Temyanko, S. Suzuki, J.V. Moloney, N. Peyghambarian: Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber, Opt. Express 14(16), 7087–7092 (2006)

    Article  CAS  Google Scholar 

  • R.E. Slusher, G. Lenz, J. Holdin, J. Sanghera, L.B. Shaw, I.D. Aggarwal: Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers, J. Opt. Soc. Am. B 21(6), 1146–1155 (2004)

    Article  CAS  Google Scholar 

  • J.S. Sanghera, I.D. Aggarwal, L.B. Shaw, C.M. Florea, P. Pureza, V.Q. Nguyen, F. Kung, D. Gibson, I.D. Aggarwal: Nonlinear properties of chalcogenide glass fibers, J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006)

    CAS  Google Scholar 

  • X. Jiang, N.Y. Joly, M.A. Finger, F. Babic, G.K.L. Wong, J.C. Travers, P.S.J. Russell: Deep–ultraviolet to mid–infrared supercontinuum generated in solid–core ZBLAN photonic crystal fibre, Nat. Photonics 9(2), 133–139 (2015)

    Article  CAS  Google Scholar 

  • E.P. Schartner, A. Dowler, H. Ebendorff-Heidepriem: Fabrication of low-loss, small-core exposed core microstructured optical fibers, Opt. Mater. Express 7(5), 496–1502 (2017)

    Article  Google Scholar 

  • C. Xia, M. Kumar, O.P. Kulkarni, M.N. Islam, F.L. Terry, M.J. Freeman, M. Poulain, G. Mazé: Mid–infrared supercontinuum generation to 4.5 \({\upmu}\)m in ZBLAN fluoride fibers by nanosecond diode pumping, Opt. Lett. 31(17), 2553–2555 (2006)

    Article  CAS  Google Scholar 

  • M.C. Brierley, P.W. France: Neodymium–doped fluorozirconate fiber laser, Electron. Lett. 23(16), 815–817 (1987)

    Article  Google Scholar 

  • X. Zhu, R. Jain: 10-W-level diode-pumped compact 2.78 \(\upmu\)m ZBLAN fiber laser, Opt. Lett. 32(1), 26–28 (2007)

    Article  Google Scholar 

  • S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe: Liquid-cooled 24 W mid–infrared Er:ZBLAN fiber laser, Opt. Lett. 34(20), 3062–3064 (2009)

    Article  CAS  Google Scholar 

  • M. Pollnau, C. Ghisler, W. Luthy, H.P. Weber, J. Schneider, U.B. Unrau: Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 \({\upmu}\)m, Opt. Lett. 22(9), 612–614 (1997)

    Article  CAS  Google Scholar 

  • H. Yanagita, I. Masuda, T. Yamashita, H. Toratani: Diode laser pumped Er3+ fibre laser operation between 2.7/2.8 \({\upmu}\)m, Electron. Lett. 26(22), 1836–1838 (1990)

    Article  Google Scholar 

  • B. Srinivasan, J. Tafoya, R.K. Jain: High-power Watt-level CW operation of diode-pumped 2.7 \({\upmu}\)m fiber lasers using efficient cross-relaxation and energy transfer mechanisms, Opt. Express 4(12), 490–495 (1999)

    Article  CAS  Google Scholar 

  • X. Zhu, R. Jain: Compact 2 W wavelength-tunable Er:ZBLAN mid–infrared fiber laser, Opt. Lett. 32(16), 2381–2383 (2007)

    Article  CAS  Google Scholar 

  • X. Zhu, R. Jain: Watt–level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the 2.7/2.8 \(\upmu\)m avelength range, Opt. Lett. 33(14), 1578–1580 (2008)

    Article  CAS  Google Scholar 

  • S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe: Liquid-cooled 24 W mid–infrared Er:ZBLAN fiber laser, Opt. Lett. 34(20), 3062–3064 (2009)

    Article  CAS  Google Scholar 

  • M. Pollnau, S.D. Jackson: Erbium 3-\(\upmu\)m fiber lasers, IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001)

    Article  CAS  Google Scholar 

  • M. Pollnau, S.D. Jackson: Energy recycling versus lifetime quenching in erbium-doped 3-\({\upmu}\)m fiber lasers, IEEE J. Quantum Electron. 38(2), 162–169 (2002)

    Article  CAS  Google Scholar 

  • S.D. Jackson: Continuous wave 2.9 \({\upmu}\)m dysprosium-doped fluoride fiber laser, Appl. Phys. Lett. 83(7), 1316–1318 (2003)

    Article  CAS  Google Scholar 

  • Z. Meng, J. Kamebayashi, M. Higashihata, Y. Nakata, T. Okada, Y. Kubota, N. Nishimura, T. Teshima: 1.55-\(\upmu\)m Ce-Er-ZBLAN fiber laser operation under 980-nm pumping: Experiment and simulation, IEEE Photonics Technol. Lett. 14(5), 609–611 (2002)

    Article  Google Scholar 

  • C. Ghisler, M. Pollnau, G. Bunea, M. Bunea, W. Luthy, H.P. Weber: Up-conversion cascade laser at 1.7 \(\upmu\) with simultaneous 2.7 \(\upmu\)m lasing in erbium ZBLAN fibre, Electron. Lett. 31(5), 373–374 (1995)

    Article  CAS  Google Scholar 

  • H. Toebben: Room temperature CW fibre laser at 3.5 \({\upmu}\)m in Er3+–doped ZBLAN glass, Electron. Lett. 28(14), 1361–1362 (1992)

    Article  Google Scholar 

  • S.D. Jackson: 8.8 W diode-cladding-pumped Tm3+, Ho3+ doped fluoride fibre laser, Electron. Lett. 37(13), 821–822 (2001)

    Article  CAS  Google Scholar 

  • S.D. Jackson: Single-transverse-mode 2.5–W holmium-doped fluoride fiber laser operating at 2.86 \({\upmu}\)m, Opt. Lett. 29(4), 334–336 (2004)

    Article  CAS  Google Scholar 

  • C. Carbonnier, H. Tobben, U.B. Unrau: Room temperature CW fibre laser at 3.22 \(\upmu\)m, Electron. Lett. 34(9), 893–894 (1998)

    Article  CAS  Google Scholar 

  • J. Schneider, C. Carbonnier, U.B. Unrau: Characterization of a Ho3+–doped fluoride fiber laser with a 3.9-\({\upmu}\)m emission wavelength, Appl. Opt. 36(33), 8595–8600 (1997)

    Article  CAS  Google Scholar 

  • T. Komukai, Y. Fukasaku, T. Sugawa, Y. Miyajima: Highly efficient and tunable Nd3+ doped fluoride fibre laser operating in 1.3 \({\upmu}\)m band, Electron. Lett. 29(9), 755–756 (1993)

    Article  CAS  Google Scholar 

  • Y. Durteste, M. Monerie, J.Y. Allain, H. Poignant: Amplification and lasing at 1.3 \({\upmu}\)m in praseodymium-doped fluorozirconate fibres, Electron. Lett. 27(8), 626–628 (1991)

    Article  CAS  Google Scholar 

  • G. Androz, M. Bernier, D. Faucher, R. Vallee: 2.3 W single transverse mode thulium–doped ZBLAN fiber laser at 1480 nm, Opt. Express 16(20), 16019–16031 (2008)

    Article  CAS  Google Scholar 

  • M. Eichhorn, S.D. Jackson: Comparative study of continuous wave Tm3+–doped silica and fluoride fiber lasers, Appl. Phys. B 90(1), 35–41 (2008)

    Article  CAS  Google Scholar 

  • R. Allen, L. Esterowitz: CW diode pumped 2.3 \({\upmu}\)m fiber laser, Appl. Phys. Lett. 55(8), 721–722 (1989)

    Article  CAS  Google Scholar 

  • S. Ferber, V. Gaebler, H.-J. Eichler: Violet and blue upconversion-emission from erbium–doped ZBLAN-fibers with red diode laser pumping, Opt. Mater. 20(3), 211–215 (2002)

    Article  CAS  Google Scholar 

  • J.Y. Allain, M. Monerie, H. Poignant: Tunable green upconversion erbium fibre laser, Electron. Lett. 28(2), 111–113 (1992)

    Article  Google Scholar 

  • D.S. Funk, J.G. Eden: Laser diode-pumped holmium-doped fluorozirconate glass fiber laser in the green (\(\lambda\approx\) 544–549 nm): Power conversion efficiency, pump acceptance bandwidth, and excited-state kinetics, IEEE J. Quantum Electron. 37(8), 980–992 (2001)

    Article  CAS  Google Scholar 

  • D.S. Funk, J.W. Carlson, J.G. Eden: Ultraviolet (381 nm), room temperature laser in neodymium-doped fluorozirconate fibre, Electron. Lett. 30(22), 1859–1860 (1994)

    Article  CAS  Google Scholar 

  • H. Zellmer, P. Riedel, A. Tunnermann: Visible upconversion lasers in praseodymium-ytterbium-doped fibers, Appl. Phys. B 69(5), 417–421 (1999)

    Article  CAS  Google Scholar 

  • M. Zeller, H.G. Limberger, T. Lasser: Tunable Pr3+–Yb3+–doped all–fiber upconversion laser, IEEE Photonics Technol. Lett. 15(2), 194–196 (2003)

    Article  Google Scholar 

  • P. Xie, T.R. Gosnell: Room–temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions, Opt. Lett. 20, 1014–1016 (1995)

    Article  CAS  Google Scholar 

  • T. Sandrock, H. Scheife, E. Heumann, G. Huber: High-power continuous–wave upconversion fiber laser at room temperature, Opt. Lett. 22(11), 808–810 (1997)

    Article  CAS  Google Scholar 

  • R.M. El-Agmy: Upconversion CW laser at 284 nm in a Nd:YAG-pumped double-cladding thulium-doped ZBLAN fiber laser, Laser Phys. 18(6), 803–806 (2008)

    Article  CAS  Google Scholar 

  • G. Qin, S. Huang, Y. Feng, A. Shirakawa, K.-I. Ueda: Multiple-wavelength up-conversion laser in Tm3+–doped ZBLAN glass fiber, IEEE Photonics Technol. Lett. 17(9), 1818–1820 (2005)

    Article  CAS  Google Scholar 

  • R. Paschotta, N. Moore, W.A. Clarkson, A.C. Tropper, D.C. Hanna, G. Maze: 230 mW of blue light from a thulium-doped upconversion fiber laser, IEEE J. Sel. Top. Quantum Electron. 3(4), 1100–1102 (1997)

    Article  CAS  Google Scholar 

  • M.P. Le Flohic, J.Y. Allain, G.M. Stéphan, G. Mazé: Room-temperature continuous-wave upconversion laser at 455 nm in a Tm3+ fluorozirconate fiber, Opt. Lett. 19(23), 1982–1984 (1994)

    Article  CAS  Google Scholar 

  • C.L. Hagen, J.W. Walewski, S.T. Sanders: Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source, IEEE Photonics Technol. Lett. 18(1), 91–93 (2006)

    Article  CAS  Google Scholar 

  • F.G. Omenetto, N.A. Wolchover, M.R. Wehner, M. Ross, A. Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y. Joly, P.S.J. Russel: Spectrally smooth supercontinuum from 350 nm to 3 \(\upmu\)m in sub-centimeter lengths of soft–glass photonic crystal fibers, Opt. Express 14(11), 4928–4934 (2006)

    Article  CAS  Google Scholar 

  • J.H.V. Price, T.M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J.Y.Y. Leong, P. Petropoulos, J.C. Flanagan, G. Brambilla, X. Feng, D.J. Richardson: Mid-IR supercontinuum generation from nonsilica microstructured optical fibers, IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007)

    Article  CAS  Google Scholar 

  • P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto: Over 4000 nm bandwidth of mid–IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs, Opt. Express 16(10), 7161–7168 (2008)

    Article  CAS  Google Scholar 

  • V.F. Sears: Neutron scattering lengths and cross sections, Neutron News 3(3), 29–37 (1992)

    Article  Google Scholar 

  • S. Aasland, T. Grande: Structure of fluorozirconate glasses and melts, Glass Pap. 52(1), 21–28 (1988)

    Google Scholar 

  • Y. Tian, T. Wei, X. Jing, J. Zheng, S. Xu: Enhanced 2.7 and 2.9 mm emission in Er3+/Ho3+ doped fluoride glass sensitized by Pr3, Mater. Res. Bull. 76, 67–73 (2016)

    Article  CAS  Google Scholar 

  • J.K. Christie, A. Pedone, M.C. Menziani, A. Tilocca: Fluorine environment in bioactive glasses: Ab initio molecular dynamics simulations, J. Phys. Chem. B 115(9), 2038–2045 (2011)

    Article  CAS  Google Scholar 

  • M.F. Ding, J. Lau, J.D. Mackenzie: Halide glasses based on chlorides bromides and iodides, J. Non-Cryst. Solids 80, 538–452 (1986)

    Article  Google Scholar 

  • J.A. Duffy, M.D. Ingram: Zinc bromide glass, J. Non-Cryst. Solids 58, 43–144 (1983)

    Article  Google Scholar 

  • K. Kadono, S. Shinomura, H. Kinugare, H. Tanaka: Preparation and vibrational spectroscopy of ZnI2-based glasses, J. Non-Cryst. Solids 116, 33–38 (1990)

    Article  CAS  Google Scholar 

  • K. Kadono, H. Kageyama, N. Kamijio, H. Tanaka: Structure of zinc halide based glasses, J. Non-Cryst. Solids 140, 98–102 (1992)

    Article  CAS  Google Scholar 

  • L.F. Santos, R.M. Almeida: Short and medium range order in zinc halide based glasses, J. Non-Cryst. Solids 232–234, 150–158 (1998)

    Google Scholar 

  • H.-T. Sun, J. Zhou, J. Qiu: Recent advances in bismuth activated photonic materials, Prog. Mater. Sci. 64, 1–72 (2014)

    Article  CAS  Google Scholar 

  • E.I. Cooper, C.A. Angell: Far IR transmitting cadmium iodide based glasses, J. Non-Cryst. Solids 56, 75–80 (1983)

    Article  CAS  Google Scholar 

  • M. Guignard, V. Nazabal, A. Moreau, S. Cherukulappurath, G. Boudebs, H. Zeglache, G. Martinelli, Y. Quiquempois, F. Smektala, J.-L. Adam: Optical and structural properties of new chalcohalide glasses, J. Non-Cryst. Solids 354, 1322–1326 (2008)

    Article  CAS  Google Scholar 

  • J. Heo, J.K. Park, Y.S. Kim: Infrared transmitting Cd-As-Ge I glasses, J. Non-Cryst. Solids 175, 204–210 (1994)

    Article  CAS  Google Scholar 

  • F. Gan: Structure, properties and applications of chalcohalide glasses, J. Non-Cryst. Solids 140, 184–193 (1992)

    Article  CAS  Google Scholar 

  • K. Kadono, K. Mitani, M. Yamashita, H. Tanaka, Y. Kawamoto, K. Ohniro, R. Kano: Ionic conduction in Li-X based and Cu-X based glasses (X = Cl, Br, I), J. Non-Cryst. Solids 140, 103–106 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Musgraves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Clare, A.G., Wachtel, P.F., Musgraves, J.D. (2019). Halide Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_17

Download citation

Publish with us

Policies and ethics