Skip to main content

Electrical Transport Properties of Glass

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

The aim of this chapter is to review the current understanding of various effects, both electronic and ionic transports, in oxide and chalcogenide glasses. Oxide and chalcogenide glasses are classified into an electronic or ionic transport materials depending on the composition of their constituents. Doping of transition metals or alkali atoms into oxide glasses produces electronic or ionic properties in electrical conduction processes. Free carriers (electron and hole) in rigid materials are transported via extended states (band conduction). Localized carriers are transported by a hopping mechanism through localized states. If carrier transport occurs in a deformable lattice, either with strong or weak carrier–phonon interaction, the carrier is accompanied by lattice distortion. This is regarded as a pseudoparticle and is called a polaron, producing a polaronic transport in these media, which is usually discussed for the transition-metal-oxide glasses (s). It is suggested in this article that an alternative explanation for the transport mechanism, instead of the traditional polaron model, is also possible in TMOG. When the conduction, either electronic or ionic, is thermally activated, it is pointed out that the Meyer–Neldel rule () or the compensation law plays the principal role in the transport process in glassy materials. A long-standing puzzle is the mixed alkali effect () in oxide glasses, together with the power-law conductivity behavior. A similar effect, i. e., the mixed cation effect, is also found in chalcogenide glasses. All of these are still matters of debate for electronic and/or ionic transport in glasses and there are many unsolved and important problems on electrical conductions in glasses, which will be finally summarized. Although the principal concern is with physics involved in electrical transport in glasses, nevertheless it should be mentioned at this juncture that electrical transport phenomena also have many technological ramifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • M.D. Ingram: Electrical properties of glasses. In: Material Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, Weinheim 1991) pp. 715–750

    Google Scholar 

  • N.F. Mott, E.A. Davis: Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford 1979)

    Google Scholar 

  • D. Emin: Phonon-assisted transition rate I. Optical-phonon-assisted hopping in solids, Adv. Phys. 24, 305–348 (1975)

    Article  Google Scholar 

  • D. Emin: Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behaviors, Phys. Rev. Lett. 100, 166602-4 (2008)

    Article  CAS  Google Scholar 

  • N.F. Mott: Conduction in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford 1993)

    Google Scholar 

  • E. Abraham, P.W. Anderson, D.C. Liciardello, T.V. Ramakrishnan: Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42, 673–676 (1979)

    Article  Google Scholar 

  • G. Hertel, D.J. Bishop, E.G. Spensor, J.M. Royel, D.C. Dynes: Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si, Phys. Rev. Lett. 50, 743–746 (1983)

    Article  CAS  Google Scholar 

  • T.F. Rosenbaum, K. Andres, G.A. Thomas, R.N. Bhatt: Sharp metal-insulator transition in a random solid, Phys. Rev. Lett. 43, 1723–1725 (1980)

    Article  Google Scholar 

  • S.R. Elliott: Physics of Amorphous Materials, 2nd edn. (Longman Scientific and Technical, Harlow 1990)

    Google Scholar 

  • N.F. Mott: Conduction in non-crystalline materials, Philos. Mag. 19, 835–852 (1969)

    Article  CAS  Google Scholar 

  • K. Shimakawa, K. Miyake: Multiphonon tunneling conduction of localized \(\pi\) electron in amorphous carbon films, Phys. Rev. Lett. 61, 994–996 (1988)

    Article  CAS  Google Scholar 

  • M. Pollak, T.H. Geballe: Low-frequency conductivity due to hopping processes in silicon, Phys. Rev. 122, 1742–1753 (1961)

    Article  CAS  Google Scholar 

  • A.R. Long: Frequency-dependent loss in amorphous semiconductors, Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  • S.R. Elliott: A.c. conduction in amorphous chalcogenide and pnictide semiconductors, Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  • H. Scher, M.F. Shlesinger, J.T. Bendler: Time-scale invariance in transport and relaxation, Phys. Today 44, 26–32 (1991)

    Article  Google Scholar 

  • J.C. Dyre: The random free-energy barrier model for ac conduction in disordered solids, J. Appl. Phys. 64, 2456–2468 (1988)

    Article  Google Scholar 

  • J.C. Dyre: Universal low-temperature ac conductivity of macroscopically disordered nonmetals, Phys. Rev. B 48, 12511–12516 (1993)

    Article  CAS  Google Scholar 

  • T. Holstein: Studies of polaron motion: Part II, Ann. Phys. 8, 343–389 (1959)

    Article  CAS  Google Scholar 

  • T. Holstein: Sign of the hall coefficient in hopping-type charge transport, Philos. Mag. 27, 225–233 (1973)

    Article  CAS  Google Scholar 

  • C.H. Seager, D. Emin, R.K. Quinn: Electrical transport and structural properties of bulk As-Te-I, As-Te-Ge, and As-Te chalcogenide glasses, Phys. Rev. B 8, 4746–4760 (1973)

    Article  CAS  Google Scholar 

  • M. Sayer, A. Mansingh: Transport properties of semiconducting phosphate glasses, Phys. Rev. B 6, 4629–4642 (1972)

    Article  CAS  Google Scholar 

  • K. Shimakawa: On the mechanism of dc and ac transport in transition metal oxide glasses, Philos. Mag. B 60, 377–389 (1989)

    Article  CAS  Google Scholar 

  • E. Gorham-Bergeron, D. Emin: Phonon-assisted hopping due to interaction with both acoustical and optical phonons, Phys. Rev. B 15, 3667–3680 (1977)

    Article  CAS  Google Scholar 

  • K. Shimakawa, K. Miyake: Hopping transport of localized \(\pi\) electrons in amorphous carbon films, Phys. Rev. B 39, 7578–7584 (1989)

    Article  CAS  Google Scholar 

  • B. Roling, C. Martiny, S. Bruckner: Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping, Phys. Rev. B 63, 214203–214209 (2001)

    Article  CAS  Google Scholar 

  • J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom: Fundamental questions relating to ion conduction in disordered solids, Rep. Prog. Phys. 72, 046501–046515 (2009)

    Article  CAS  Google Scholar 

  • A. Yelon, B. Movaghar, R.S. Crandal: Multi-excitation entropy: Its role in thermodynamics and kinetics, Rep. Prog. Phys. 69, 1145–1194 (2006)

    Article  CAS  Google Scholar 

  • T.B. Schroder, J.C. Dyre: Ac hopping conduction at extreme disorder takes place on the percolating cluster, Phys. Rev. Lett. 101, 025901–025904 (2008)

    Article  CAS  Google Scholar 

  • A. Hunt: Statistical and percolation effects on ionic conduction in amorphous systems, J. Non-Cryst. Solids 175, 59–70 (1994)

    Article  Google Scholar 

  • A. Bunde, M.D. Ingram, P. Maass: The dynamic structure model for ion transport in glasses, J. Non-Cryst. Solids 172–174, 1222–1236 (1994)

    Article  Google Scholar 

  • A. Bunde, K. Funke, M.D. Ingram: Ionic glasses: History and challenges, Solid State Ion 105, 1–13 (1998)

    Article  CAS  Google Scholar 

  • E. Bychkov, V. Tsegelnik, Y. Vlasov, A. Pradel, M. Ribes: Percolation transition in Ag-doped germanium chalcogenide-based glasses: Conductivity and silver diffusion results, J. Non-Cryst. Solids 208, 1–20 (1996)

    Article  CAS  Google Scholar 

  • E. Bychkov: Tracer diffusion studies of ion-conducting chalcogenide glasses, Solid State Ion 136/137, 1111–1118 (2000)

    Article  Google Scholar 

  • E. Bychkov: Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features, Solid State Ion 180, 510–516 (2009)

    Article  CAS  Google Scholar 

  • K. Shimakawa, T. Wagner: Origin of power-law composition dependence in ionic transport glasses, J. Appl. Phys. 113, 143701–143705 (2013)

    Article  CAS  Google Scholar 

  • K. Shimakawa, M. Aniya: Dynamics of atomic diffusion in condensed matter: Origin of the Meyer–Neldel compensation law, Monatsh. Chem. 144, 67–71 (2013)

    Article  CAS  Google Scholar 

  • K. Tanaka, K. Shimakawa: Amorphous Chalcogenide Semiconductors and Related Materials (Springer, New York 2011)

    Book  Google Scholar 

  • K. Shimakawa, F. Abdel-Wahab: The Meyer–Neldel rule in chalcogenide glasses, Appl. Phys. Lett. 70, 652–654 (1997)

    Article  CAS  Google Scholar 

  • H. Overhof, P. Thomas: Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, Berlin 1989)

    Book  Google Scholar 

  • P. Nagel: Electronic transport in amorphous semiconductors. In: Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, New York 1979) pp. 113–158

    Chapter  Google Scholar 

  • J. Singh, K. Shimakawa: Advances in Amorphous Semiconductors (Taylor Francis, New York 2003)

    Book  Google Scholar 

  • H. Okamoto, K. Hattori, H. Hamakawa: Hall effect near the mobility edge, J. Non-Cryst. Solids 164–166, 445–448 (1993)

    Article  Google Scholar 

  • S.R. Elliott: A theory of a.c. conduction in chalcogenide glasses, Philos. Mag. 36, 1291–1304 (1977)

    Article  CAS  Google Scholar 

  • E.A. Davis: States in the gap and defects in amorphous semiconductors. In: Amorphous Semiconductors, ed. by M.H. Brodsky (Springer, New York 1979) pp. 41–72

    Chapter  Google Scholar 

  • A. Ganjoo, K. Shimakawa: Estimation of density of charged defects in amorphous chalcogenides from a.c. conductivity: Random-walk approach for bipolarons based on correlated barrier hopping, Philos. Mag. Lett. 70, 287–291 (1994)

    Article  CAS  Google Scholar 

  • N. Tohge, T. Minami, Y. Yamamoto, M. Tanaka: Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge-Bi-Se, J. Appl. Phys. 51, 108–1053 (1980)

    Article  Google Scholar 

  • G. Belev, S.O. Kasap: Reduction of the dark current in stabilized a-Se based x-ray detectors, J. Non-Cryst. Solids 352, 1616–1620 (2006)

    Article  CAS  Google Scholar 

  • M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.-H. Lee, R.M. Gwilliam, P.K. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-type chalcogenides by ion implantation, Nat. Commun. (2016), https://doi.org/10.1038/ncomms

    Article  Google Scholar 

  • M. Wuttig, N. Yamada: Phase-change materials for rewriteable data storage, Nat. Mater. 6, 824–832 (2007)

    Article  CAS  Google Scholar 

  • D.S. Patil, K. Shimakawa, V. Zima, J. Macak, T. Wagner: Evaluation of impedance spectra of ionic-transport materials by a random-walk approach considering electrode and bulk response, J. Appl. Phys. 113, 143705–143705 (2013)

    Article  CAS  Google Scholar 

  • D.S. Patil, K. Shimakawa, V. Zima, T. Wagner: Quantitative impedance analysis of solid ionic conductors: Effects of electrode polarization, J. Appl. Phys. 115, 143707–143706 (2014)

    Article  CAS  Google Scholar 

  • J.R. Macdonald: Theory of ac space charge polarization effects in photoconductors, semiconductors, and electrolytes, Phys. Rev. 92, 4–17 (1953)

    Article  CAS  Google Scholar 

  • J.R. Macdonald: Utility and importance of Poisson–Nernst–Planck immitance-spectroscopy fitting models, J. Phys. Chem. C 117(45), 23433–23450 (2013)

    Article  CAS  Google Scholar 

  • J.R. Macdonald: Addendum to “Fundamental questions relating to ion conduction in disordered solids”, J. Appl. Phys. 107, 101101–101109 (2010)

    Article  CAS  Google Scholar 

  • Y. Miyamoto, M. Itoh, K. Tanaka: Mobility of Ag ions in Ag-As-S glasses, Solid State Commun. 92, 895–898 (1994)

    Article  CAS  Google Scholar 

  • K. Tanaka, Y. Miyamoto, M. Itoh, E. Bychkov: Ionic conduction in glasses, Phys. Status Solidi (a) 173, 317–322 (1999)

    Article  CAS  Google Scholar 

  • K. Tanaka, Y. Miyamoto: Ionic conductivities in crystalline, glassy, and liquid AgAsS2, Solid State Ion. 269, 106–109 (2015)

    Article  CAS  Google Scholar 

  • M. Frumar, T. Wagner: Ag doped chalcogenide glasses and their applications, Curr. Opin. Solid State Mater. Sci. 7, 117–123 (2003)

    Article  CAS  Google Scholar 

  • M. Mitokova, Y. Sakaguchi, D. Tenne, S. Bhagat, T.L. Alford: Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionics nonvolatile memory, Phys. Status Solidi (a) 207, 621–626 (2010)

    Article  CAS  Google Scholar 

  • C. Rau, P. Armand, A. Pradel, A. Varsamis, E.I. Kamitosos, D. Granier, E. Ibanez, E. Philippot: Mixed cation effect in chalcogenide glasses Rb2S-Ag2S-GeS2, Phys. Rev. B 63, 184204–184209 (2001)

    Article  CAS  Google Scholar 

  • K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432, 488–492 (2004)

    Article  CAS  Google Scholar 

  • H. Hosono: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids 352, 851–858 (2006)

    Article  CAS  Google Scholar 

  • T. Kamiya, K. Nomura, H. Hosono: Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater. 11, 044305–044323 (2010)

    Article  CAS  Google Scholar 

  • H. Sakata, K. Sega, B.K. Chaudhuri: Multiphonon tunneling conduction in vanadium-cobalt-tellurite glasses, Phys. Rev. B 60, 3230–3236 (1999)

    Article  CAS  Google Scholar 

  • P. Maass, A. Bunde, M.D. Ingram: Ion transport anomalies in glasses, Phys. Rev. Lett. 68, 3064–3067 (1992)

    Article  CAS  Google Scholar 

  • D.E. Day: Mixed alkali glasses, J. Non-Cryst. Solids 21, 343–372 (1976)

    Article  CAS  Google Scholar 

  • J.A. Rawlands, S.O. Kasap: Amorphous semiconductors usher in digital x-ray imaging, Phys. Today 50, 24–31 (1997)

    Article  Google Scholar 

  • K. Tanioka: The ultrasensitive TV pickup tube from conception to recent development, J. Mater. Sci. 18, S321–325 (2007)

    CAS  Google Scholar 

  • O. Rubel, A. Potvin, D. Laughton: Generalized lucky-drift model for impact ionization in semiconductors with disorder, J. Phys. 23, 055802–055807 (2011)

    CAS  Google Scholar 

  • K. Tanka: Avalanche breakdown in amorphous selenium and related materials: Brief review, critique, and proposal, J. Optolectron. Adv. Mater. 16, 243–251 (2014)

    Google Scholar 

  • M. Terao, T. Morioka, T. Ohta: Electrical phase-change memory: Fundamentals and state of the art, Jpn. J. Appl. Phys. 48, 080001–080014 (2009)

    Article  CAS  Google Scholar 

  • S. Raoux, F. Xiong, M. Wuttig, E. Pop: Phase change materials and phase change memory, Mater. Res. Soc. 39, 703–710 (2014)

    Article  Google Scholar 

  • M. Suri, O. Bichler, D. Querlioz, B. Traor, O. Cueto, L. Pemiola, V. Sousa, D. Vuillaume, C. Gamrat, B. DeSalvo: Physical aspect of low power synapses based on phase change memory devices, J. Appl. Phys. 112, 054904–054910 (2012)

    Article  CAS  Google Scholar 

  • I.V. Karpov, M. Mitra, D. Kau, G. Spandini, Y. Kryukov, V.G. Karpov: Fundamental drift of parameters in chalcogenide phase change memory, J. Appl. Phys. 102, 124503–124506 (2007)

    Article  CAS  Google Scholar 

  • D. Ielmini, A.L. Lacaita, D. Mantegazza: Recovery and drift dynamics of resistance and threshold voltages in phase-change memories, IEEE Trans. Electron Devices 54, 308–314 (2009)

    Article  CAS  Google Scholar 

  • M. Mitra, Y. Jung, D.S. Gianola, R. Agarwal: Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices, Appl. Phys. Lett. 96, 222111–222113 (2010)

    Article  CAS  Google Scholar 

  • A.F. Ioffe, A.R. Regel: Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  • A. Kawabata: A self-consistent treatment of Anderson localization, Solid State Commun. 38, 823–825 (1981)

    Article  Google Scholar 

  • Z. Ovadyahu: Some finite temperature aspects of the Anderson transition, J. Phys. C 19(26), 5187–5214 (1986)

    CAS  Google Scholar 

  • A. Mobius: The metal semiconductor transition in three-dimensional disordered systems – reanalysis of recent experiments for and against minimum metallic conductivity, J. Phys. C 18, 4639–4670 (1989)

    Article  Google Scholar 

  • M.A. Howson: Incipient localization and electron-electron correlation effects in metallic glass alloys, J. Phys. F 14, L25–32 (1984)

    Article  CAS  Google Scholar 

  • R.W. Cochrane, J.O. Strom-Olsen: Scaling behavior in amorphous and disordered metals, Phys. Rev. B 29, R1088–1090 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professors K. Tanaka and T. Wagner, V. Zima, and M. Frumar for fruitful discussion on glasssciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Shimakawa .

Editor information

Editors and Affiliations

Appendix

Appendix

In Sect. 10.1.1, it is stated that the Boltzmann transport theory breaks down when carrier mean free path \(l\) closes in on the atomic separation (Ioffe–Regel rule [10.77]). Kawabata [10.78] modified the Boltzmann conductivity by taking into account multiple scattering as follows

$$\sigma=\sigma_{\mathrm{B}}\left\{1-\frac{C}{(k_{\mathrm{F}}l)^{2}}\right\},$$
(10.B56)

where \(\sigma_{\mathrm{B}}\) is the Boltzmann conductivity given by \(ne^{2}\tau/m^{*}\), where \(n\) is the density of the carrier, \(\tau\) is the scattering time, \(m^{*}\) is the effective mass, \(C\) is a constant (order of unity), and \(k_{\mathrm{F}}\) is the wave vector at the Fermi energy. Equation (10.B56) was generalized further as

$$\begin{aligned}\displaystyle\sigma&\displaystyle=\sigma_{\mathrm{B}}\left\{1-\frac{C}{(k_{\mathrm{F}}l)^{2}}\left(1-\frac{l}{L}\right)\right\}\\ \displaystyle&\displaystyle\equiv\mathrm{A}+\mathrm{B}\frac{l}{L}\;,\end{aligned} $$
(10.B57)

where \(L\) is the inelastic diffusion length when the electron–phonon or electron–electron interaction dominates the electron transport [10.5]. Note that \(L> l\) is required in (10.B57).

If electron–electron collisions dominate, the inelastic scattering time \(\tau_{\mathrm{i}}\) is proportional to

$$\left(\frac{k_{\mathrm{B}}T}{E_{\mathrm{F}}}\right)^{-2}[10.5]\;,$$

and hence \(L\) (\(\propto\tau_{\mathrm{i}}^{1/2}\)) should be proportional to \(T^{-1}\), producing \(\sigma\propto T\). If on the other hand electron–phonon collisions dominate, \(\tau_{\mathrm{i}}\) is proportional to \(T^{-1}\), leading to \(L\propto T^{-1/2}\) and \(\sigma\propto T^{1/2}\). In amorphous metals, the conductivity is found to follow the above prediction [10.5, 10.79, 10.80, 10.81, 10.82]

$$\sigma=\alpha+\beta T^{\frac{1}{2}}+\gamma T\;.$$
(10.B58)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Shimakawa, K. (2019). Electrical Transport Properties of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_10

Download citation

Publish with us

Policies and ethics