Skip to main content

Impact of Pollutants on Paddy Soil and Crop Quality

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Paddy soils, used most often for rice cultivation, are flooded and submerged soils that exhibit prominent set of properties as result of extensive saturation. Among these, redox potential (Eh) and pH fluctuations are the most important characteristics of paddy soils indicating variation in oxidation-reduction reactions of soil components like oxygen (O2), nitrogen (N), iron (Fe), manganese (Mn), sulfur (S), and carbon (C). Reckless use of inorganic fertilizers and pesticides and irrigation with polluted water for intended rice crop yields have raised heavy metal pollution problems especially lead, cadmium, and arsenic in soil environment. Besides, various macro- and micronutrients including nitrogen and potassium and excess of salt water and fluorine also negatively affect the crop quality and yield. Accumulation of heavy metals and other pollutants in soil and their introduction in food chain through uptake by rice and vegetables are of major concern. Therefore, management practices including artificial submergence, plowing, puddling, organic manuring, leveling, liming, and fertilization play vital role in development of paddy soils. Various techniques are adopted for remediation of polluted paddy soil that includes excavation, chemical stabilization, soil washing, phytoremediation, and thermal desorption. Further investigations are required for identification of soil flora and fauna for remediation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adepoju M, Adekoya J (2014) Heavy metal distribution and assessment in stream sediments of river Orle, Southwestern Nigeria. Arab J Geosci 7(2):743–756

    Article  CAS  Google Scholar 

  • Almasoud FI, Usman AR, Al-Farraj AS (2015) Heavy metals in the soils of the Arabian gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arab J Geosci 8(3):1691–1703

    Article  CAS  Google Scholar 

  • Anonymous (2001) Fertilizer knowledge, No. 1, 2001, Potash and Phosphate Institute of Canada-India Programme, Gurgaon

    Google Scholar 

  • Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249(2):271–277

    Article  Google Scholar 

  • Banerjee H, Sanyal S (2011) Emerging soil pollution problems in rice and their amelioration. Rice Knowledge Management Portal (RKMP). Available at: http://www.rkmp.co.in

  • Barnes GL (1990) Paddy soils now and then. World Arch 22(1):1–17

    Article  Google Scholar 

  • Bouman B, Van Laar H (2006) Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric Syst 87(3):249–273

    Article  Google Scholar 

  • Chen Z, Lee G, Liu J (2000) The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41(1–2):235–242

    Article  CAS  Google Scholar 

  • Chen Y-S, Han Y-H, Rathinasabapathi B, Ma LQ (2015) Naming and functions of ACR2, arsenate reductase, and ACR3 arsenite efflux transporter in plants (correspondence on: Kumar S, Dubey RS, Tripathi RD Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230). Environ Int 81:98

    Article  Google Scholar 

  • Cheng Y-Q, Yang L-Z, Cao Z-H, Ci E, Yin S (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151(1–2):31–41

    Article  CAS  Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17(3):262–267

    Article  CAS  Google Scholar 

  • Crawford GW, Lee G-A (2003) Agricultural origins in the Korean peninsula. Antiquity 77(295):87–95

    Article  Google Scholar 

  • Ding L-J, An X-L, Li S, Zhang G-L, Zhu Y-G (2014) Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ Sci Technol 48(18):10641–10647

    Article  CAS  Google Scholar 

  • Du J, Yan C, Li Z (2013) Formation of iron plaque on mangrove Kandalar. Obovata (SL) root surfaces and its role in cadmium uptake and translocation. Mar Pollut Bull 74(1):105–109

    Article  CAS  Google Scholar 

  • Gupta S, Banerjee S, Mondal S (2009) Phytotoxicity of fluoride in the germination of paddy (Oryza sativa) and its effect on the physiology and biochemistry of germinated seedlings. Fluoride 42(2):142

    CAS  Google Scholar 

  • Hegde DM (1992) Cropping system research highlights. In Co-ordinators report, presented during 20th Workshop at the Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Huang JH, Hu KN, Decker B (2011) Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water Air Soil Pollut 219(1–4):401–415

    Article  CAS  Google Scholar 

  • Hseu ZY, Su SW, Lai HY, Guo HY, Chen TC, Chen ZS (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56(1):31–52

    Article  CAS  Google Scholar 

  • Jäckel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33(7–8):965–971

    Article  Google Scholar 

  • Jia Y, Huang H, Chen Z, Zhu Y-G (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48(2):1001–1007

    Article  CAS  Google Scholar 

  • Jiang X, Hou X, Zhou X, Xin X, Wright A, Jia Z (2015) pH regulates key players of nitrification in paddy soils. Soil Biol Biochem 81:9–16

    Article  CAS  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1–2):1–14

    Article  Google Scholar 

  • Krüger M, Frenzel P (2003) Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob Chang Biol 9(5):773–784

    Article  Google Scholar 

  • Kumar S, Singh M (2015) Effect of fluoride contaminated irrigation water on eco-physiology, biomass and yield in Gossypium hirsutum L. Trop Plant Res 2(2):134–142

    Google Scholar 

  • Kyuma K (2004) Paddy soil science. Kyoto University Press, Melbourne

    Google Scholar 

  • Lai H-Y, Chen Z-S (2005) The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere 60(8):1062–1071

    Article  CAS  Google Scholar 

  • Lan T, Han Y, Cai Z (2015) Denitrification and its product composition in typical Chinese paddy soils. Biol Fertil Soils 51(1):89–98

    Article  CAS  Google Scholar 

  • Li QK (1992a) Acidity of paddy soils: Paddy Soils of China. Science Press, Beijing, pp 274–288

    Google Scholar 

  • Li QK (1992b) Nutrient status of paddy soils and its regulation. In: Chen P-L, Fan S-Q, Wang H-J (eds) Paddy Solis of China. Science Press, Beijing, pp 333–348

    Google Scholar 

  • Li Q-K (1992c). Redox potential of paddy soils. In: Chen P-L, Fan S-Q, Wang H-J (eds), Paddy Soils of China. Science Press, Beijing, pp 208–223

    Google Scholar 

  • Li Q-K (1992d) Soil environment of rice rhizosphere. In: Chen P-L, Fan S-Q, Wang H-J (eds) Paddy Solis of China. Science Press, Beijing, pp 413–430

    Google Scholar 

  • Li Z, Horikawa Y (1997) Stability behavior of soil colloidal suspensions in relation to sequential reduction of soils: II. Turbidity changes by submergence of paddy soils at different temperatures. Soil Sci Plant Nutr 43(4):911–919

    Article  Google Scholar 

  • Li P, Lang M (2014) Gross nitrogen transformations and related N2O emissions in uncultivated and cultivated black soil. Biol Fertil Soils 50(2):197–206

    Article  CAS  Google Scholar 

  • Li C, Salas W, DeAngelo B, Rose S (2006) Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J Environ Qual 35(4):1554–1565

    Article  CAS  Google Scholar 

  • Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339(1–3):153–166

    Article  CAS  Google Scholar 

  • Lu Y, Wassmann R, Neue H, Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 47(2):203–218

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  Google Scholar 

  • Machender G, Dhakate R, Rao SM, Rao BM, Prasanna L (2014) Heavy metal contamination in sediments of Balanagar industrial area, Hyderabad, Andra Pradesh, India. Arab J Geosci 7(2):513–525

    Article  CAS  Google Scholar 

  • Mahalanobis J (1971) Emerging soil pollution problems in Rice and their amelioration. MSc thesis, IARI, New Delhi

    Google Scholar 

  • Misra SG, Mani D (1994) Agricultural Pollution, vol I. Asish Publishing House, Punjabi Bagh, New Delhi

    Google Scholar 

  • Naidu E (1974) Studies on the effect of moisture regimes and nitrogen application schedules on nutrient leaching, water use and yield of upland direct seeded rice. IARI, Division of Agron, New Delhi

    Google Scholar 

  • Nambiar K, Soni P, Vats M, Sehgal K, Mehta D (1992) Annual report, 1987–88, 1988–89. All India coordinated project on long term fertilizers experiments. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295

    Article  CAS  Google Scholar 

  • Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417

    Article  CAS  Google Scholar 

  • Ochoa-Herrera V, Banihani Q, León G, Khatri C, Field JA, Sierra-Alvarez R (2009) Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Res 43(13):3177–3186

    Article  CAS  Google Scholar 

  • Rahman MM, Basaglia M, Vendramin E, Boz B, Fontana F, Gumiero B, Casella S (2014) Bacterial diversity of a wooded riparian strip soil specifically designed for enhancing the denitrification process. Biol Fertil Soils 50(1):25–35

    Article  Google Scholar 

  • Ratering S, Conrad R (1998) Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Glob Chang Biol 4(4):397–407

    Article  Google Scholar 

  • Ratering S, Schnell S (2000) Localization of iron-reducing activity in paddy soilby profile studies. Biogeochemistry 48(3):341–365

    Article  CAS  Google Scholar 

  • Rogan N, Serafimovski T, Dolenec M, Tasev G, Dolenec T (2009) Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani field (Macedonia). Environ Geochem Health 31(4):439–451

    Article  CAS  Google Scholar 

  • Shaobing P, Jianliang H (2002) Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Zhongguo Nongye Kexue (China)

    Google Scholar 

  • Sidenko NV, Khozhina EI, Sherriff BL (2007) The cycling of Ni, Zn, cu in the system “mine tailings–ground water–plants”: a case study. Appl Geochem 22(1):30–52

    Article  CAS  Google Scholar 

  • Smith E, Smith J, Smith L, Biswas T, Correll R, Naidu R (2003) Arsenic in Australian environment: an overview. J Environ Sci Health A 38(1):223–239

    Article  CAS  Google Scholar 

  • Smartt AD, Brye KR, Rogers CW, Norman RJ, Gbur EE, Hardke JT, Roberts TL (2016) Previous crop and cultivar effects on methane emissions from drill-seeded, delayed-flood rice grown on a clay soil. Appl Environ Soil Sci 2016:1–13

    Article  Google Scholar 

  • Smolik B, Telesiński A, Szymczak J, Zakrzewska H (2011) Assessing of humus usefulness in limiting of soluble fluoride content in soil. Ochr Środ Zas Nat 49:202–208

    Google Scholar 

  • Sohn E (2014) The toxic side of rice. Nature 514(7524):S62–S63

    Article  Google Scholar 

  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111(44):15699–15704

    Article  CAS  Google Scholar 

  • Subbaiah S (2006) Several options being tapped. Hindu Surv Indian Agric 50

    Google Scholar 

  • Tiwari K (2001) Phosphorus needs of Indian soils and crops. Better Crops Int 15(2):6

    Google Scholar 

  • Urbanski L, Kölbl A, Lehndorff E, Houtermans M, Schad P, Zhang G-L, Utami SR, Kögel-Knabner I (2017) Paddy management on different soil types does not promote lignin accumulation. J Plant Nutr Soil Sci 180(3):366–380

    Article  CAS  Google Scholar 

  • Wassmann R, Lantin R, Neue H, Buendia L, Corton T, Lu Y (2000) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycling Agroecosys 58(1–3):23–36

    Article  CAS  Google Scholar 

  • Williams P, Price A, Raab A, Hossain S, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39(15):5531–5540

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41(19):6854–6859

    Article  CAS  Google Scholar 

  • Xing G, Zhu Z (2000) An assessment of N loss from agricultural fields to the environment in China. Nutr Cycl Agroecosyst 57(1):67–73

    Article  Google Scholar 

  • Xu X, McGrath S, Meharg A, Zhao F (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42(15):5574–5579

    Article  CAS  Google Scholar 

  • Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19(9):556–563

    Article  CAS  Google Scholar 

  • Yap DW, Adezrian J, Khairiah J, Ismail BS, Ahmad-Mahir R (2009) The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. Am Eurasian J Agric Environ Sci 6(1):16–19

    CAS  Google Scholar 

  • Zeng F, Mao Y, Cheng W, Wu F, Zhang G (2008) Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ Pollut 153(2):309–314

    Article  CAS  Google Scholar 

  • Zhang Y, Scherer HW (2000) Mechanisms of fixation and release of ammonium in paddy soils after flooding II. Effect of transformation of nitrogen forms on ammonium fixation. Biol Fertil Soils 31(6):517–521

    Article  CAS  Google Scholar 

  • Zhang L, Li Q, Ma L, Ruan J (2013) Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze). Plant Soil 366(1–2):659–669

    Article  CAS  Google Scholar 

  • Zhao X, Xie Y-x, Xiong Z-q, Yan X-y, Xing G-x, Zhu Z-l (2009) Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil 319(1–2):225–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, I. et al. (2018). Impact of Pollutants on Paddy Soil and Crop Quality. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_8

Download citation

Publish with us

Policies and ethics