Skip to main content

Paddy Land Pollutants and Their Role in Climate Change

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Abstract

Climate change is one of the biggest concerns because its potential impact on human life is severe. The contribution ratio of CH4, CO2, and N2O to global warming would be high even if their emission rates are small. Paddy lands may become polluted by the aggregation of several pollutants, i.e., organic and inorganic fertilizers; discharges from the quickly extending industrial territories; use of manure, and organic solid waste; and wastewater irrigation system. Paddy lands are considered to be a major source of anthropogenic greenhouse gas (GHG) emissions through methanogenesis (a process of methane production), a microbial process that is strictly restricted to paddy fields. Overall 90% of rice land is at least temporarily flooded and produces GHGs at higher rates. The production of N2O in soils occurs during nitrification, denitrification, and microbiological processes. A positive relationship was found between the climate change and N fertilizer application with N2O emissions from paddy lands. The use of N fertilizer also stimulates and influences the CH4 emission flux between paddy land and atmosphere. The impact of biochar amendments on the CH4 emission expanded by 35.16–40.62% in paddy fields. It is of incredible concern worldwide that gaseous outflows from management of organic solid waste add to local and worldwide scale ecological procedures, for example, eutrophication, fermentation, and climate change. CH4 is generated from the disintegration of organic matter (OM) in anaerobic conditions by methanogens. Soil OM is the most well-known constraining element for methanogenesis in paddy fields. OM obtained from three primary sources: animal fertilizer, green manure, and crop deposits. The amendment of OM, for example, rice deposits and compost application, prompts expanding CH4 outflows because of anaerobic decay and results in climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram R, Hashmi MZ, Nasim W (2017) Role of antibiotics in climate change. In: Hashmi MZ, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils. Springer, Cham, pp 91–98

    Google Scholar 

  • Allen DE, Kingston G, Rennenberg H, Dalal RC, Schmidt S (2010) Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agric Ecosyst Environ 136:209–217

    Article  CAS  Google Scholar 

  • Aronson EL, Helliker BR (2010) Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91:3242–3251

    Article  CAS  Google Scholar 

  • Augustenborg CA, Hepp S, Kammann C, Hagan D, Schmidt O, Müller C (2012) Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual 41:1203–1209

    Article  CAS  Google Scholar 

  • Banger K, Tian HQ, Lu CQ (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol 18:3259–3267

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16:1–11

    Article  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20:1175–1183

    Article  CAS  Google Scholar 

  • Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B et al (2011) Manure management: implications for greenhouse gas emissions. Anim Feed Sci Technol 16:514–531

    Article  Google Scholar 

  • Chen C, Yu CN, Shen CF, Tang XJ, Qin ZH, Yang K, Hashmi MZ, Huang RL (2014) Paddy field—a natural sequential anaerobic aerobic bioreactor for polychlorinated biphenyls transformation. Environ Pollut 190:43–50

    Article  CAS  Google Scholar 

  • Clemens J, Wulf S (2005) Reduktion der ammoniakausgasung aus kofermentationssubstraten und gulle wahrend der lagerung und ausbringung durch interne versaurung mit in NRW anfallenden organischen kohlenstofffraktionen. Forschungsvorhaben im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, Bonn, p 41

    Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. In: Donald LS (ed) Advances in agronomy. Elsevier, Amsterdam, pp 1–63

    Google Scholar 

  • Datta A, Yeluripati JB, Nayak DR, Mahata KR, Santra SC, Adhya TK (2013) Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmos Environ 66:114–122

    Article  CAS  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    Article  CAS  Google Scholar 

  • Dong H, Yao Z, Zheng X, Mei B, Xie B, Wang R, Zhu J (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101

    Article  CAS  Google Scholar 

  • Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosal organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282

    Article  CAS  Google Scholar 

  • Eurostat (2016) Agriculture, forestry and fishery statistics—2015 edition. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations (2010) OECD-FAO agricultural outlook 2011–2030

    Google Scholar 

  • Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112

    Article  CAS  Google Scholar 

  • Gagnon B, Ziadi N, Rochette P, Chantigny MH, Angers DH (2011) Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci Soc Am J 75:595–604

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D et al (2012) Quantifying the total and bioavailablepolycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  Google Scholar 

  • Han I, Congeevaram S, Ki DW, Oh BT, Park J (2011) Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Appl Microbiol Biotechnol 89:835–842

    Article  CAS  Google Scholar 

  • Haque MM, Kim SY, Ali MA, Kim PJ (2015) Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 387:251–264

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2006) Guidelines for National Greenhouse Gas Inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jing Z, Hu Y, Niu Q, Liu Y, Li YY, Wang XC (2013) UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresour Technol 137:349–357

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, Deluca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Knoblauch C, Marifaat AA, Haefele M (2008) Biochar in rice-based system: impact on carbon mineralization and trace gas emissions. Bioresour Technol 95:255–257

    Google Scholar 

  • Knoblauch C, Maarifat AA, Pfeiffer EM, Haefele SM (2011) Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol Biochem 43:1768–1778

    Article  CAS  Google Scholar 

  • Kogel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lehmann J et al (2011) Biochar effects on soil biota - a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Linquist BA, Adviento-Borbe MA, Pittelkow CM, van Kessel C, van Groenigen KJ (2012) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crops Res 135:10–21

    Article  Google Scholar 

  • Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117

    Article  CAS  Google Scholar 

  • Liu C, Wang K, Zheng X (2012) Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat–maize cropping system in northern China. Biogeosciences 9:839–850

    Article  CAS  Google Scholar 

  • Liu S, Qin Y, Zou J, Liu Q (2014) Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in Southeast China. Sci Total Environ 408:906–913

    Article  Google Scholar 

  • Lu F, Wang XK, Han B, Ouyang ZY, Zheng H (2010) Straw return to rice paddy: soil carbon sequestration and increased methane emission. Ying Yong Sheng Tai Xue Bao 21:99–108

    CAS  PubMed  Google Scholar 

  • Ma K, Conrad R, Lu Y (2012) Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 78:445–454

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    Article  CAS  Google Scholar 

  • Mosier AR, Halvorson AD, Reule CA, Liu XJ (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598

    Article  CAS  Google Scholar 

  • Myhre G, Shindell D, BreÂon FM, Collins W, Fuglestvedt J, Huang J et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, p 714

    Google Scholar 

  • Natywa M, Selwet M, Maciejewski T (2014) Wpływ wybranych czynników agrotechnicznych na liczebność i aktywność drobnoustrojów glebowych of some agrotechnical factors on the number and activity soil. Fragmenta Agronomica 31:56–63

    Google Scholar 

  • Nayak DR, Babu YJ, Datta A, Adhya TK (2007) Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers. J Environ Qual 36:1577–1584

    Article  CAS  Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plant. Plant Physiol 94:59–66

    Article  CAS  Google Scholar 

  • Oenema O, Tamminga S (2005) Nitrogen in global animal production and management options for improving nitrogen use efficiency. Sci China C Life Sci 48:871–887

    CAS  PubMed  Google Scholar 

  • Owen JJ, Silver WL (2015) Greenhouse gas emissions from dairy manure management: a review of field-based studies. Glob Chang Biol 21:550–565

    Article  Google Scholar 

  • Pardo G, Moral R, Aguilera E, del Prado A (2015) Gaseous emissions from management of solid waste: a systematic review. Glob Chang Biol 21:1313–1327

    Article  Google Scholar 

  • Peng J, Lu Z, Rui J, Lu Y (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74:2894–2901

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Reynolds L (2013) Agriculture and livestock remain major sources of greenhouse gas emissions. Worldwatch Institute, Washington, p 18

    Google Scholar 

  • Ro S, Seanjan P, Tulaphitak T (2011) Sulfate content influencing methane production and emissionfrom incubated soil and rice-planted soil in Northeast Thailand. Soil Sci Plant Nutr 57:833–842

    Article  CAS  Google Scholar 

  • Shang QY, Yang XX, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiment. Glob Chang Biol 17:2196–2210

    Article  Google Scholar 

  • Skiba U, Jones SK, Drewer J, Helfter C, Anderson M, Dinsmore K, McKenzie R, Nemitz E, Sutton MA (2013) Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate. Biogeosciences 10:1231–1241

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P et al (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Article  Google Scholar 

  • Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5:165–176

    Article  CAS  Google Scholar 

  • SSIBCCC (Second State Information Bulletin of Climate Change in China) (2013) Second National Communication on climate change of the People’s republic of China, vol 2, p 18

    Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:413–420

    Article  CAS  Google Scholar 

  • Tong C, Wang WQ, Zeng CS, Marrs R (2010) Methane (CH4) emission from a tidal marsh in the Min River estuary, Southeast China. J Environ Sci Heal A 45:50–516

    Article  Google Scholar 

  • Troy SM, Lawlor PG, Flynn CJO, Healy MG (2013) Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol Biochem 60:173–181

    Article  CAS  Google Scholar 

  • Venterea RT, Maharjan B, Dolan MS (2011) Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J Environ Qual 40:1521–1531

    Article  CAS  Google Scholar 

  • Wang ZY, Xu YC, Li Z, Guo YX, Wassmann R, Neue HU, Lantin RS, Buendia LV, Ding YP, Wang ZZ (2000) A four-year record of methane emissions from irrigated Rice fields in the Beijing region of China. Nutr Cycl Agroecosyst 58:55–63

    Article  Google Scholar 

  • Wang YS et al (2010) Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One 9:e93571

    Article  Google Scholar 

  • Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosyst 58:23–36

    Article  CAS  Google Scholar 

  • WRI (2014) World greenhouse gas emissions in 2005. World Resources Institute

    Google Scholar 

  • Yan G, Zheng X, Cui F, Yao Z, Zhou Z, Deng J, Xu Y (2013) Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agric Ecosyst Environ 178:39–50

    Article  CAS  Google Scholar 

  • Yang LG, Wang YD (2007) The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res 102:128–140

    Article  Google Scholar 

  • Yu L, Tang J, Zhang R, Wu Q, Gong M (2012) Effects of biochar application on soil methane emission at different soil moisture levels. Biol Fertil Soils 49:119–128

    Article  Google Scholar 

  • Yuan Q, Pump J, Conrad R (2013) Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosci Discuss 10:14169–14193

    Article  Google Scholar 

  • Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sustain Energy Rev 16:5059–5070

    Article  CAS  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41:820–831

    Article  CAS  Google Scholar 

  • Zhang AF, Liu YM, Pan GX, Hussain Q, Li LQ, Zheng JW, Zhang XH (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, R. et al. (2018). Paddy Land Pollutants and Their Role in Climate Change. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_7

Download citation

Publish with us

Policies and ethics