Skip to main content

Arsenic in Paddy Soils and Potential Health Risk

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

This chapter deals with the arsenic sources, its contamination in paddy soils, and its toxic effects to human health when it becomes the part of the food chain. Arsenic, the 20th abundant metalloid, exists naturally and has potential to become part of different matrices like air, soil, and water. In groundwater its contamination is recognized worldwide. Similarly, several studies indicate its contamination in paddy soils. Specially, arsenic has become a threat to sustainable rice cultivation in South and Southeast Asia. Rice has a special ability to uptake the arsenic, and it is a staple food in different countries of this region like Bangladesh, India, and Pakistan. In this region, people are at high risk of arsenic contamination through the ingestion of arsenic-contaminated rice. Thousands of people are suffering from the toxic effects of arsenic and its compounds all over the world. Arsenic in the human body is transported through the blood to the different organs of the body, in the form of MMA after ingestion. Its acute and chronic exposures cause several adverse health effects like dermal changes and respiratory, pulmonary, cardiovascular, gastrointestinal, hematological, hepatic, renal, neurological, developmental, reproductive, immunologic, genotoxic, mutagenetic, and carcinogenic effects. So, to overcome this issue, there is a need of modification in agricultural practices, genetic modifications, and public awareness regarding this menace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernathy C (1993) Draft drinking water criteria document on arsenic. US-EPA Science Advisory Board report. Contract 68-C8

    Google Scholar 

  • Acharyya SK, Shah BA (2007) Arsenic-contaminated groundwater from parts of Damodar fan-delta and west of Bhagirathi River, West Bengal, India: influence of fluvial geomorphology and Quaternary morphostratigraphy. Environ Geol 52:489–501

    Article  CAS  Google Scholar 

  • Aschengrau A, Zierler S, Cohen A (1989) Quality of community drinking water and the occurrence of spontaneous abortion. Arch Environ Health Int J 44:283–290

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ, Afridi HI, Kandhro GA, Khan S, Kolachi NF, Wadhwa SK, Shah F, Arain MB (2011) Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food Chem Toxicol 49:265–270

    Article  CAS  Google Scholar 

  • Belton JC, Benson NC, Hanna ML, Taylor RT (1985) Growth inhibitory and cytotoxic effects of three arsenic compounds on cultured Chinese hamster ovary cells. J Environ Sci Health A 20:37–72

    Google Scholar 

  • Bencko V, Wagner V, Wagnerova M, Batora J (1988) Immunological profiles in workers of a power plant burning coal rich in arsenic content. J Hyg Epidemiol Microbiol Immunol 32:137–146

    CAS  PubMed  Google Scholar 

  • Bhattacharya P, Samal A, Majumdar J, Santra S (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8:63–70

    Article  Google Scholar 

  • Bhattacharyya P, Ghosh A, Chakraborty A, Chakrabarti K, Tripathy S, Powell M (2003) Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost. Commun Soil Sci Plant Anal 34:2779–2790

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35:647–654

    Article  CAS  Google Scholar 

  • Cai K, Gao D, Chen J, Luo S (2009) Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal Behav 4:1–3

    Article  CAS  Google Scholar 

  • Compounds WA (2001) Environmental Health Criteria 224. World Health Organisation, Geneva

    Google Scholar 

  • Dhar RK, Biswas BK, Samanta G, Mandal BK, Chakraborti D, Roy S, Jafar A, Islam A, Ara G, Kabir S (1997) Groundwater arsenic calamity in Bangladesh. Curr Sci 73:48–59

    CAS  Google Scholar 

  • Dittmar J, Voegelin A, Maurer F, Roberts LC, Hug SJ, Saha GC, Ali MA, ABM B, Kretzschmar R (2010) Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Environ Sci Technol 44:8842–8848

    Article  CAS  Google Scholar 

  • Duxbury J, Mayer A, Lauren J, Hassan N (2003) Food chain aspects of arsenic contamination in Bangladesh: effects on quality and productivity of rice. J Environ Sci Health A 38:61–69

    Article  CAS  Google Scholar 

  • Eguchi N, Kuroda K, Endo G (1997) Metabolites of arsenic induced tetraploids and mitotic arrest in cultured cells. Arch Environ Contam Toxicol 32:141–145

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Gerhardsson L, Dahlgren E, Eriksson A, Lagerkvist BE, Lundström J, Nordberg GF (1988) Fatal arsenic poisoning—a case report. Scand J Work Environ Health 14:130–133

    Article  CAS  Google Scholar 

  • Ginsburg J, Lotspeich W (1963) Interrelations of arsenate and phosphate transport in the dog kidney. Am J Physiol 205:707–714

    CAS  PubMed  Google Scholar 

  • Goebel HH, Schmidt PF, Bohl J, Tettenborn B, Krämer G, Gutmann L (1990) Polyneuropathy due to acute arsenic intoxication: biopsy studies. J Neuropathol Exp Neurol 49:137–149

    Article  CAS  Google Scholar 

  • Gonsebatt M, Vega L, Montero R, Garcia-Vargas G, Del Razo L, Albores A, Cebrian M, Ostrosky-Wegman P (1994) Lymphocyte replicating ability in individuals exposed to arsenic via drinking water. Mutat Res 313:293–299

    Article  CAS  Google Scholar 

  • Gurung JK, Ishiga H, Khadka MS (2005) Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ Geol 49:98–113

    Article  CAS  Google Scholar 

  • Halim M, Majumder R, Nessa S, Hiroshiro Y, Uddin M, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164:1335–1345

    Article  CAS  Google Scholar 

  • Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 189:43–87

    CAS  PubMed  Google Scholar 

  • Hopenhayn-Rich C, Biggs ML, Smith AH (1998) Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 27:561–569

    Article  CAS  Google Scholar 

  • Hossain M, Jahiruddin M, Panaullah G, Loeppert R, Islam M, Duxbury J (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut 156:739–744

    Article  CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68

    Article  CAS  Google Scholar 

  • Johnson MO, Cohly HH, Isokpehi RD, Awofolu OR (2010) The case for visual analytics of arsenic concentrations in foods. Int J Environ Res Public Health 7:1970–1983

    Article  CAS  Google Scholar 

  • Khan MA, Islam MR, Panaullah G, Duxbury JM, Jahiruddin M, Loeppert RH (2009) Fate of irrigation-water arsenic in rice soils of Bangladesh. Plant Soil 322:263–277

    Article  CAS  Google Scholar 

  • Khan MA, Islam MR, Panaullah G, Duxbury JM, Jahiruddin M, Loeppert RH (2010a) Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 333:263–274

    Article  CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, Mcgrath SP, Zhao FJ (2010b) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521

    Article  CAS  Google Scholar 

  • Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, WU MM, Tai TY (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139:484–492

    Article  CAS  Google Scholar 

  • Liao XY, Chen TB, Xie H, Liu YR (2005) Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31:791–798

    Article  CAS  Google Scholar 

  • Liu H, Probst A, Liao B (2005a) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith F (2005b) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138

    Article  CAS  Google Scholar 

  • Liu W, Zhu Y, Hu Y, Williams P, Gault A, Meharg A, Charnock J, Smith F (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  Google Scholar 

  • Mahimairaja S, Bolan N, Adriano D, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011:431287

    Article  Google Scholar 

  • Mcarthur J, Ravenscroft P, Safiulla S, Thirlwall M (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • Mcarthur J, Banerjee D, Hudson-Edwards K, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth R, Chatterjee A, Talukder T (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RC, Sun G, Zhu Y-G, Feldmann J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  Google Scholar 

  • Nickson R, Mcarthur J, Ravenscroft P, Burgess W, Ahmed K (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Pauwels GB, Peter J, Jager S, Wijffels C (1965) A study of the arsenate uptake by yeast cells compared with phosphate uptake. Biochim Biophys Acta 94:312–314

    Article  CAS  Google Scholar 

  • Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409:4645–4655

    Article  CAS  Google Scholar 

  • Rahman M, Tondel M, Ahmad SA, Axelson O (1998) Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148:198–203

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah M (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  Google Scholar 

  • Ravenscroft P (2007) Predicting the global distribution of natural arsenic contamination of groundwater. Symposium on arsenic: the geography of a global problem, Royal Geographical Society, London

    Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis, 1st edn. Wiley Blackwell, London

    Book  Google Scholar 

  • Ravenscropt P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arenic in groundwater of the Bengal Basin, Bangladesh: distributions, field relations and hydrogeological settings. Hydrogeol J 13:727–751

    Article  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  • Saha J, Dikshit A, Bandyopadhyay M, Saha K (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313

    Article  CAS  Google Scholar 

  • Shannon R, Strayer D (1989) Arsenic-induced skin toxicity. Hum Toxicol 8:99–104

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D, Macdonald D, Nicolli H, Barros A, Tullio J, Pearce J, Alonso M (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  CAS  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, Lecluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Tabacova S, Baird D, Balabaeva L, Lolova D, Petrov I (1994) Placental arsenic and cadmium in relation to lipid peroxides and glutathione levels in maternal-infant pairs from a copper smelter area. Placenta 15:873–881

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  Google Scholar 

  • Tchounwou PB, Patlolla AK, Centeno JA (2003) Invited reviews: Carcinogenic and systemic health effects associated with arsenic exposure—a critical review. Toxicol Pathol 31:575–588

    CAS  PubMed  Google Scholar 

  • Whitacre R, Pearse C (1972) Mineral industries bulletin. Colorado, School of Mines 1–2

    Google Scholar 

  • Williams P, Islam M, Adomako E, Raab A, Hossain S, Zhu Y, Feldmann J, Meharg A (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    Article  CAS  Google Scholar 

  • Williams P, Raab A, Feldmann J, Meharg A (2007) Market basket survey shows elevated levels of As in South Central US processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41:2178–2183

    Article  CAS  Google Scholar 

  • Wolochow H, Putman E, Doudoroff M, Hassid W, Barker H (1949) Preparation of sucrose labeled with C14 in the glucose or fructose component. J Biol Chem 180:1237–1242

    CAS  PubMed  Google Scholar 

  • Xu X, Mcgrath S, Meharg A, Zhao F (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  Google Scholar 

  • Zhao FJ, Mcgrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzal, B., Hussain, I., Farooqi, A. (2018). Arsenic in Paddy Soils and Potential Health Risk. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_10

Download citation

Publish with us

Policies and ethics