Skip to main content

Exercise Testing

  • Chapter
  • First Online:
Pulmonary Function Tests in Clinical Practice

Part of the book series: In Clinical Practice ((ICP))

  • 1704 Accesses

Abstract

Exercise tests are often used to develop an accurate profile of an individual’s functional exercise capacity. The results of exercise tests form the basis of exercise prescription and assist in identifying underlying physiological factors limiting exercise tolerance. Certain measures taken during exercise tests may be used to indicate disease severity and prognosis as well as to evaluate treatment responses in disease populations. Exercise tests are subdivided into laboratory and field tests as well as submaximal and maximal tests. This chapter will discuss the technical features and interpretation of the six minute walk test and cardiopulmonary exercise test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although this is the conventional formula typically used to express “breathing reserve”, the actual reserve is calculated as \( 100-\left({\dot{\mathrm{V}}}_{\mathrm{E}}\max /\mathrm{MVV}\times 100\right) \).

  2. 2.

    In reality VD doesn’t remain constant with exercise; it increases slightly and may reach 200 mL. This is due to a number of factors including, exercise-induced bronchodilatation and distention of airways related to the increased lung volumes [75].

  3. 3.

    This equation is derived from Bohr’s Law which states that the product of volume and concentration is the same under constant temperature.

  4. 4.

    Graphically, looking at \( \dot{\mathrm{V}}{\mathrm{O}}_2 \) vs. WR curve serves the same target. If the curve reaches the predicted peak \( \dot{\mathrm{V}}{\mathrm{O}}_2 \), then the exercise capacity is normal; Figure 9.11a. A subnormal exercise capacity is indicated when the curve doesn’t reach the predicted peak \( \dot{\mathrm{V}}{\mathrm{O}}_2 \), with or without an early plateau; Figure 9.11b,c.

  5. 5.

    Comment on the ABG result before and after exercise especially PaO2, PaCO2 & P(A-a)O2if ABG is available.

References

  1. American Thoracic Society. ATS statement: guidelines for the six-minute walk test. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. Am J Respir Crit Care Med. 2002;166(1):111–7.

    Article  Google Scholar 

  2. Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest. 2001;119(1):256–70.

    Article  CAS  PubMed  Google Scholar 

  3. Bittner V, Weiner DH, Yusuf S, et al. Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. JAMA. 1993;270(14):1702–7.

    Article  CAS  PubMed  Google Scholar 

  4. Enright PL, McBurnie MA, Bittner V, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387–98.

    Article  PubMed  Google Scholar 

  5. Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med. 1998;158(5 Pt 1):1384–7.

    Article  CAS  PubMed  Google Scholar 

  6. Barst RJ, Rubin LJ, McGoon MD, Caldwell EJ, Long WA, Levy PS. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med. 1994;121(6):409–15.

    Article  CAS  PubMed  Google Scholar 

  7. Miyamoto S, Nagaya N, Satoh T, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161(2 Pt 1):487–92.

    Article  CAS  PubMed  Google Scholar 

  8. Guyatt GH, Sullivan MJ, Thompson PJ, et al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. CMAJ. 1985;132(8):919–23.

    CAS  Google Scholar 

  9. Lipkin DP, Scriven AJ, Crake T, Poole-Wilson PA. Six minute walking test for assessing exercise capacity in chronic heart failure. Br Med J (Clin Res Ed). 1986;292(6521):653.

    Article  CAS  Google Scholar 

  10. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46.

    Article  PubMed  Google Scholar 

  11. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. Eur Respir J. 1999;14(2):270–4.

    Article  CAS  PubMed  Google Scholar 

  12. Stevens D, Elpern E, Sharma K, Szidon P, Ankin M, Kesten S. Comparison of hallway and treadmill six-minute walk tests. Am J Respir Crit Care Med. 1999;160(5):1540–3.

    Article  CAS  PubMed  Google Scholar 

  13. Enright PL. The six-minute walk test. Respir Care. 2003;48(8):783–5.

    PubMed  Google Scholar 

  14. Jensen LA, Onyskiw JE, Prasad NG. Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung. 1998;27(6):387–408.

    Article  CAS  PubMed  Google Scholar 

  15. Barthelemy JC, Geyssant A, Riffat J, Antoniadis A, Berruyer J, Lacour JR. Accuracy of pulse oximetry during moderate exercise: a comparative study. Scand J Clin Lab Invest. 1990;50(5):533–9.

    Article  CAS  PubMed  Google Scholar 

  16. Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–78.

    Article  PubMed  Google Scholar 

  17. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Article  Google Scholar 

  18. Casanova C, Celli BR, Barria P, et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur Respir J. 2011;37(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  19. Gibbons WJ, Fruchter N, Sloan S, Levy RD. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J Cardiopulm Rehabil. 2001;21(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  20. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  21. Turner SE, Eastwood PR, Cecins NM, Hillman DR, Jenkins SC. Physiologic responses to incremental and self-paced exercise in COPD: a comparison of three tests. Chest. 2004;126(3):766–73.

    Article  PubMed  Google Scholar 

  22. Palange P, Forte S, Onorati P, Manfredi F, Serra P, Carlone S. Ventilatory and metabolic adaptations to walking and cycling in patients with COPD. J Appl Physiol (1985). 2000;88(5):1715–20.

    Article  CAS  Google Scholar 

  23. Man WD, Soliman MG, Gearing J, et al. Symptoms and quadriceps fatigability after walking and cycling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(5):562–7.

    Article  PubMed  Google Scholar 

  24. Poole GW, Maskell RC. Validation of continuous determination of respired gases during steady-state exercise. J Appl Physiol. 1975;38(4):736–8.

    Article  CAS  PubMed  Google Scholar 

  25. Spiro SG, Juniper E, Bowman P, Edwards RH. An increasing work rate test for assessing the physiological strain of submaximal exercise. Clin Sci Mol Med. 1974;46(2):191–206.

    CAS  PubMed  Google Scholar 

  26. Hughson RL, Kowalchuk JM, Prime WM, Green HJ. Open-circuit gas exchange analysis in the non-steady-state. Can J Appl Sport Sci. 1980;5(1):15–8.

    CAS  PubMed  Google Scholar 

  27. Beaver WL, Wasserman K, Whipp BJ. On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol. 1973;34(1):128–32.

    Article  CAS  PubMed  Google Scholar 

  28. Clark JS, Votteri B, Ariagno RL, et al. Noninvasive assessment of blood gases. Am Rev Respir Dis. 1992;145(1):220–32.

    Article  CAS  PubMed  Google Scholar 

  29. Zeballos RJ, Weisman IM. Behind the scenes of cardiopulmonary exercise testing. Clin Chest Med. 1994;15(2):193–213.

    CAS  PubMed  Google Scholar 

  30. Killian KJ, Leblanc P, Martin DH, Summers E, Jones NL, Campbell EJ. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis. 1992;146(4):935–40.

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton AL, Killian KJ, Summers E, Jones NL. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med. 1995;152(6):2021–31.

    Article  CAS  PubMed  Google Scholar 

  32. Jones NL, Killian KJ. Exercise limitation in health and disease. N Engl J Med. 2000;343(9):632–41.

    Article  CAS  PubMed  Google Scholar 

  33. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129(2 Pt 2):S49–55.

    Article  CAS  PubMed  Google Scholar 

  34. Robinson TE, Sue DY, Huszczuk A, Weiler-Ravell D, Hansen JE. Intra-arterial and cuff blood pressure responses during incremental cycle ergometry. Med Sci Sports Exerc. 1988;20(2):142–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wasserman K, Whipp BJ. Exercise physiology in health and disease. Am Rev Respir Dis. 1975;112(2):219–49.

    Google Scholar 

  36. Whipp BJ, Davis JA. The ventilatory stress of exercise in obesity. Am Rev Respir Dis. 1984;129(2 Pt 2):S90–2.

    Article  CAS  PubMed  Google Scholar 

  37. Dempsey JA, Reddan W, Balke B, Rankin J. Work capacity determinants and physiologic cost of weight-supported work in obesity. J Appl Physiol. 1966;21(6):1815–20.

    Article  CAS  PubMed  Google Scholar 

  38. West JB. Respiratory physiology: the essentials. 7th ed. Baltimore: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  39. Jones NL. Clinical exercise testing. 4th ed. Philadelphia: W. B. Saunders; 1997.

    Google Scholar 

  40. Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  41. Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallstrom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518–28.

    Article  CAS  PubMed  Google Scholar 

  42. Weber KT, Wilson JR, Janicki JS, Likoff MJ. Exercise testing in the evaluation of the patient with chronic cardiac failure. Am Rev Respir Dis. 1984;129(2P2):S60–2.

    Article  CAS  PubMed  Google Scholar 

  43. Committee on Exercise Testing. ACC/AHA Guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 1997;30(1):260–311.

    Article  Google Scholar 

  44. Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55(10):D42–7.

    Article  Google Scholar 

  45. Janicki JS, Sheriff DD, Robotham JL, Wise RA. Cardiac output during exercise: contributions of the cardiac, circulatory and respiratory systems. In: Rowell LB, Shepard JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press; 1996. p. 649–704.

    Google Scholar 

  46. Dempsey JA, Babcock MA. An integrative view of limitations to muscular performance. Adv Exp Med Biol. 1995;384:393–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999.

    Google Scholar 

  48. Lange Andersen K, Shephard RJ, Denolin H, Varnauskas E, Masironi R. Fundamentals of exercise testing. Geneva: World Health Organization; 1971.

    Google Scholar 

  49. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6.

    Article  CAS  PubMed  Google Scholar 

  50. Tesch PA. Exercise performance and beta-blockade. Sports Med. 1985;2(6):389–412.

    Article  CAS  PubMed  Google Scholar 

  51. Jones NL. Clinical exercise testing. 3rd ed. Philadelphia: WB Saunders Company; 1988.

    Google Scholar 

  52. Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain. 2003;126(Pt 2):413–23.

    Article  PubMed  Google Scholar 

  53. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986;60(6):2020–7.

    Article  CAS  Google Scholar 

  54. Patessio A, Casaburi R, Carone M, Appendini L, Donner CF, Wasserman K. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;148:622–6.

    Article  CAS  PubMed  Google Scholar 

  55. Beaver WL, Wasserman K, Whipp BJ. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol (1985). 1986;60(2):472–8.

    Article  CAS  Google Scholar 

  56. Hughson RL, Weisiger KH, Swanson GD. Blood lactate concentration increases as a continuous function in progressive exercise. J Appl Physiol (1985). 1987;62(5):1975–81.

    Article  CAS  Google Scholar 

  57. Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):1270–5.

    Google Scholar 

  58. Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155(5):1541–51.

    Article  CAS  PubMed  Google Scholar 

  59. Belman MJ, Epstein LJ, Doornbos D, Elashoff JD, Koerner SK, Mohsenifar Z. Noninvasive determinations of the anaerobic threshold. Reliability and validity in patients with COPD. Chest. 1992;102(4):1028–34.

    Article  CAS  PubMed  Google Scholar 

  60. Perloff D, Grim C, Flack J, et al. Human blood pressure determination by sphygmomanometry. Circulation. 1993;88(5):2460–70.

    Article  CAS  PubMed  Google Scholar 

  61. Weber KT, Janicki JS. Cardiopulmonary exercise testing: physiologic principles and clinical applications. Philadelphi: W. B. Saunders; 1986.

    Google Scholar 

  62. Dillard TA, Hnatiuk OW, McCumber TR. Maximum voluntary ventilation: spirometric determinants in chronic obstructive pulmonary disease patients and normal subjects. Am Rev Respir Dis. 1993;147(4):870–5.

    Article  CAS  PubMed  Google Scholar 

  63. Dillard TA, Piantadosi S, Rajagopal KR. Prediction of ventilation at maximal exercise in chronic air-flow obstruction. Am Rev Respir Dis. 1985;132(2):230–5.

    CAS  PubMed  Google Scholar 

  64. Salzman SH. Cardiopulmonary exercise testing. In: American College of Chest Physicians, editor. The ACCP Pulmonary Board Review. Basel: Karger; 2003. p. 363–80.

    Google Scholar 

  65. Johnson BD, Saupe KW, Dempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol (1985). 1992;73(3):874–86.

    Article  CAS  Google Scholar 

  66. Gallagher CG, Brown E, Younes M. Breathing pattern during maximal exercise and during submaximal exercise with hypercapnia. J Appl Physiol (1985). 1987;63(1):238–44.

    Article  CAS  Google Scholar 

  67. Hey EN, Lloyd BB, Cunningham DJC, Jukes MGM, Bolton DPG. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol. 1966;1(2):193–205.

    Article  CAS  PubMed  Google Scholar 

  68. Dempsey JA. J.B. Wolffe memorial lecture. Is the lung built for exercise? Med Sci Sports Exerc. 1986;18(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  69. Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.

    Article  PubMed  Google Scholar 

  70. Stickland MK, Butcher SJ, Marciniuk DD, Bhutani M. Assessing exercise limitation using cardiopulmonary exercise testing. Pulm Med. 2012;2012:824091.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Klas JV, Dempsey JA. Voluntary versus reflex regulation of maximal exercise flow: volume loops. Am Rev Respir Dis. 1989;139(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  72. Laveneziana P, Guenette JA, Webb KA, O’Donnell DE. New physiological insights into dyspnea and exercise intolerance in chronic obstructive pulmonary disease patients. Expert Rev Respir Med. 2012;6(6):651–62.

    Article  CAS  PubMed  Google Scholar 

  73. O’Donnell DE, Revill SM, Webb KA. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(5):770–7.

    Article  PubMed  Google Scholar 

  74. Johnson BD, Weisman IM, Zeballos RJ, Beck KC. Emerging concepts in the evaluation of ventilatory limitation during exercise: the exercise tidal flow-volume loop. Chest. 1999;116(2):488–503.

    Article  CAS  PubMed  Google Scholar 

  75. Bouhuys A. Respiratory dead space. In: Fenn WO, Rahn H, editors. Handbook of physiology. Section III, Vol. 1. Respiration. Washington, DC: American Phsyiological Society; 1964. p. 699–714.

    Google Scholar 

  76. Bohr C. Ueber die lungenathmung. Skand Arch Physiol. 1891;2:236–68.

    Article  Google Scholar 

  77. Johnson BD, Dempsey JA. Demand vs. capacity in the aging pulmonary system. Exerc Sport Sci Rev. 1991;19(1):171–210.

    Article  CAS  PubMed  Google Scholar 

  78. Ries AL, Farrow JT, Clausen JL. Accuracy of two ear oximeters at rest and during exercise in pulmonary patients. Am Rev Respir Dis. 1985;132(3):685–9.

    CAS  PubMed  Google Scholar 

  79. Severinghaus JW, Naifeh KH, Koh SO. Errors in 14 pulse oximeters during profound hypoxia. J Clin Monit. 1989;5(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  80. American Association for Respiratory Care. AARC clinical practice guideline: exercise testing for evaluation of hypoxemia and/or desaturation. Respir Care. 1992;37(8):907–12.

    Google Scholar 

  81. American Thoracic Society. Pulmonary function laboratory management and procedure manual. New York: American Thoracic Society; 1998.

    Google Scholar 

  82. Francis GS, Goldsmith SR, Ziesche S, Nakajima H, Cohn JN. Relative attenuation of sympathetic drive during exercise in patients with congestive heart failure. J Am Coll Cardiol. 1985;5(4):832–9.

    Article  CAS  PubMed  Google Scholar 

  83. Hansen JE, Casaburi R, Cooper DM, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1988;57(2):140–5.

    Article  CAS  PubMed  Google Scholar 

  84. Jones S, Elliott PM, Sharma S, McKenna WJ, Whipp BJ. Cardiopulmonary responses to exercise in patients with hypertrophic cardiomyopathy. Heart. 1998;80(1):60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. West JB. Ventilation/blood flow and gas exchange. 5th ed. Oxford: Blackwell Scientific [distributed by Year Book (Chicago, IL)]; 1990.

    Google Scholar 

  86. Kadikar A, Maurer J, Kesten S. The six-minute walk test: a guide to assessment for lung transplantation. J Heart Lung Transplant. 1997;16(3):313–9.

    CAS  PubMed  Google Scholar 

  87. Holden DA, Rice TW, Stelmach K, Meeker DP. Exercise testing, 6-min walk, and stair climb in the evaluation of patients at high risk for pulmonary resection. Chest. 1992;102(6):1774–9.

    Article  CAS  PubMed  Google Scholar 

  88. Sciurba FC, Rogers RM, Keenan RJ, et al. Improvement in pulmonary function and elastic recoil after lung-reduction surgery for diffuse emphysema. N Engl J Med. 1996;334(17):1095–9.

    Article  CAS  PubMed  Google Scholar 

  89. Criner GJ, Cordova FC, Furukawa S, et al. Prospective randomized trial comparing bilateral lung volume reduction surgery to pulmonary rehabilitation in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):2018–27.

    Article  CAS  PubMed  Google Scholar 

  90. Sinclair DJ, Ingram CG. Controlled trial of supervised exercise training in chronic bronchitis. Br Med J. 1980;280(6213):519–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Roomi J, Johnson MM, Waters K, Yohannes A, Helm A, Connolly MJ. Respiratory rehabilitation, exercise capacity and quality of life in chronic airways disease in old age. Age Ageing. 1996;25(1):12–6.

    Article  CAS  PubMed  Google Scholar 

  92. Paggiaro PL, Dahle R, Bakran I, Frith L, Hollingworth K, Efthimiou J. Multicentre randomised placebo-controlled trial of inhaled fluticasone propionate in patients with chronic obstructive pulmonary disease. International COPD Study Group. Lancet. 1998;351(9105):773–80.

    Article  CAS  PubMed  Google Scholar 

  93. Spence DP, Hay JG, Carter J, Pearson MG, Calverley PM. Oxygen desaturation and breathlessness during corridor walking in chronic obstructive pulmonary disease: effect of oxitropium bromide. Thorax. 1993;48(11):1145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De Bock V, Mets T, Romagnoli M, Derde MP. Captopril treatment of chronic heart failure in the very old. J Gerontol. 1994;49(3):M148–52.

    Article  PubMed  Google Scholar 

  95. Bernstein ML, Despars JA, Singh NP, Avalos K, Stansbury DW, Light RW. Re-analysis of the 12-minute walk in patients with chronic obstructive pulmonary disease. Chest. 1994;105(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  96. Hajiro T, Nishimura K, Tsukino M, Ikeda A, Koyama H, Izumi T. Analysis of clinical methods used to evaluate dyspnea in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(4):1185–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gulmans VA, van Veldhoven NH, de Meer K, Helders PJ. The six-minute walking test in children with cystic fibrosis: reliability and validity. Pediatr Pulmonol. 1996;22(2):85–9.

    Article  CAS  PubMed  Google Scholar 

  98. Nixon PA, Joswiak ML, Fricker FJ. A six-minute walk test for assessing exercise tolerance in severely ill children. J Pediatr. 1996;129(3):362–6.

    Article  CAS  PubMed  Google Scholar 

  99. Mathai SC, Suber T, Khair RM, Kolb TM, Damico RL, Hassoun PM. Health-related quality of life and survival in pulmonary arterial hypertension. Ann Am Thorac Soc. 2016;13(1):31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bittner V. Six-minute walk test in patients with cardiac dysfunction. Cardiologia. 1997;42(9):897–902.

    CAS  PubMed  Google Scholar 

  101. Peeters P, Mets T. The 6-minute walk as an appropriate exercise test in elderly patients with chronic heart failure. J Gerontol A Biol Sci Med Sci. 1996;51(4):M147–51.

    Article  CAS  PubMed  Google Scholar 

  102. Zugck C, Kruger C, Durr S, et al. Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy? Eur Heart J. 2000;21(7):540–9.

    Article  CAS  PubMed  Google Scholar 

  103. Cahalin LP, Mathier MA, Semigran MJ, Dec GW, DiSalvo TG. The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure. Chest. 1996;110(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  104. Cote CG, Celli BR. In patients with COPD, the 6 minute walking distance is a better predictor of health care utilization than FEV1, blood gases, and dyspnea. Eur Respir J. 1998;383.

    Google Scholar 

  105. Kessler R, Faller M, Fourgaut G, Mennecier B, Weitzenblum E. Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(1):158–64.

    Article  CAS  PubMed  Google Scholar 

  106. Cahalin L, Pappagianopoulos P, Prevost S, Wain J, Ginns L. The relationship of the 6-min walk test to maximal oxygen consumption in transplant candidates with end-stage lung disease. Chest. 1995;108(2):452–9.

    Article  CAS  PubMed  Google Scholar 

  107. Pratter MR, Curley FJ, Dubois J, Irwin RS. Cause and evaluation of chronic dyspnea in a pulmonary disease clinic. Arch Intern Med. 1989;149(10):2277–82.

    Article  CAS  PubMed  Google Scholar 

  108. Martinez FJ, Stanopoulos I, Acero R, Becker FS, Pickering R, Beamis JF. Graded comprehensive cardiopulmonary exercise testing in the evaluation of dyspnea unexplained by routine evaluation. Chest. 1994;105(1):168–74.

    Article  CAS  PubMed  Google Scholar 

  109. Weisman IM, Zeballos RJ. Clinical evaluation of unexplained dyspnea. Cardiologia. 1996;41(7):621–34.

    CAS  PubMed  Google Scholar 

  110. Sridhar MK, Carter R, Banham SW, Moran F. An evaluation of integrated cardiopulmonary exercise testing in a pulmonary function laboratory. Scott Med J. 1995;40(4):113–6.

    Article  CAS  PubMed  Google Scholar 

  111. Gay SE, Weisman IM, Flaherty KR, Martinez FJ. Cardiopulmonary exercise testing in unexplained dyspnea. In: Weisman IM, Zeballos RJ, editors. Clinical exercise testing. Basel: Karger; 2002. p. 81–8.

    Chapter  Google Scholar 

  112. Weisman IM, Zeballos RJ. A step approach to the evaluation of unexplained dyspnea: the role of cardiopulmonary exercise testing. Pulm Perspect. 1998;15:8–11.

    Google Scholar 

  113. Zeballos RJ, Weisman IM, Connery SM, Bradley JP. Standard treadmill (STE) vs incremental cycle ergometry (IET) in the evaluation of airway hyperreactivity in unexplained dyspnea. Am J Respir Crit Care Med. 1999;159:A419.

    Google Scholar 

  114. Punzal PA, Ries AL, Kaplan RM, Prewitt LM. Maximum intensity exercise training in patients with chronic obstructive pulmonary disease. Chest. 1991;100(3):618–23.

    Article  CAS  PubMed  Google Scholar 

  115. Ries AL. The importance of exercise in pulmonary rehabilitation. Clin Chest Med. 1994;15(2):327–37.

    CAS  PubMed  Google Scholar 

  116. Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Dis. 1991;143(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  117. Bolliger CT, Jordan P, Solèr M, et al. Exercise capacity as a predictor of postoperative complications in lung resection candidates. Am J Respir Crit Care Med. 1995;151(5):1472–80.

    Article  CAS  PubMed  Google Scholar 

  118. Bolliger CT, Perruchoud AP. Functional evaluation of the lung resection candidate. Eur Respir J. 1998;11(1):198–212.

    Article  CAS  PubMed  Google Scholar 

  119. Morice RC, Peters EJ, Ryan MB, Putnam JB, Ali MK, Roth JA. Redefining the lowest exercise peak oxygen consumption acceptable for lung resection of high risk patients. Chest. 1996;110:161S.

    Google Scholar 

  120. Howard DK, Iademarco EJ, Trulock EP. The role of cardiopulmonary exercise testing in lung and heart-lung transplantation. Clin Chest Med. 1994;15(2):405–20.

    CAS  PubMed  Google Scholar 

  121. Williams RJ, Slater WR. Role of cardiopulmonary exercise in lung and heart–lung transplantation. In: Weisman IM, Zeballos RJ, editors. Progress in respiratory research. Clinical exercise testing. Vol 32. Basel: Karger; 2002. p. 254–63.

    Google Scholar 

  122. Stelken AM, Younis LT, Jennison SH, et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol. 1996;27(2):345–52.

    Article  CAS  PubMed  Google Scholar 

  123. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation. 1991;83(3):778–86.

    Article  CAS  PubMed  Google Scholar 

  124. Gallagher CG. Exercise limitation and clinical exercise testing in chronic obstructive pulmonary disease. Clin Chest Med. 1994;15(2):305–26.

    CAS  PubMed  Google Scholar 

  125. O’Donnell DE, Flüge T, Gerken F, Hamilton A, Webb K, Aguilaniu B, Make B, Magnussen H. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J. 2004;23(6):832–40.

    Google Scholar 

  126. Janicki JS, Weber KT, Likoff MJ, Fishman AP. Exercise testing to evaluate patients with pulmonary vascular disease. Am Rev Respir Dis. 1984;129(2 Pt 2):S93–5.

    Article  CAS  PubMed  Google Scholar 

  127. D’Alonzo GE, Gianotti L, Dantzker DR. Noninvasive assessment of hemodynamic improvement during chronic vasodilator therapy in obliterative pulmonary hypertension. Am Rev Respir Dis. 1986;133(3):380–4.

    PubMed  Google Scholar 

  128. Systrom DM, Cockrill BA, Hales CA. Role of cardiopulmonary exercise testing in patients with pulmonary vascular disease. In: Weisman IM, Zeballos RJ, editors. Progress in respiratory research. Vol 32. Basel: Karger; 2002. p. 200–4.

    Google Scholar 

  129. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229–42.

    Article  CAS  PubMed  Google Scholar 

  130. Dodd JD, Barry SC, Daly LE, Gallagher CG. Inhaled beta-agonists improve lung function but not maximal exercise capacity in cystic fibrosis. J Cyst Fibros. 2005;4(2):101–5.

    Article  CAS  PubMed  Google Scholar 

  131. Cotes JE, Zejda J, King B. Lung function impairment as a guide to exercise limitation in work-related lung disorders. Am Rev Respir Dis. 1988;137:1089–93.

    Google Scholar 

  132. Becklake MR, Rodarte JR, Kalica AR. NHLBI workshop summary. Scientific issues in the assessment of respiratory impairment. Am Rev Respir Dis. 1988;137(6):1505–10.

    Article  CAS  PubMed  Google Scholar 

  133. Cotes JE. Rating respiratory disability: a report on behalf of a working group of the European Society for Clinical Respiratory Physiology. Eur Respir J. 1990;3(9):1074–7.

    CAS  PubMed  Google Scholar 

  134. Cotes JE. Lung function: assessment and application in medicine. 5th ed. London: Blackwell Scientific Publications; 1993.

    Google Scholar 

  135. Smith DD. Pulmonary impairment/disability evaluation: controversies and criticisms. Clin Pulm Med. 1995;2(6):334–43.

    Article  Google Scholar 

  136. Sue DY. Exercise testing in the evaluation of impairment and disability. Clin Chest Med. 1994;15(2):369–87.

    CAS  PubMed  Google Scholar 

  137. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309–29.

    Article  CAS  PubMed  Google Scholar 

  138. Sterk PJ, Fabbri LM, Quanjer PH, et al. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:53–83.

    Article  CAS  PubMed  Google Scholar 

  139. European Respiratory Society. Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. ERS Task Force on Standardization of Clinical Exercise Testing. Eur Respir J. 1997;10(11):2662–89.

    Article  Google Scholar 

  140. Roca J, Whipp BJ. European respiratory monograph 6: clinical exercise testing. Lausanne: European Respiratory Society; 1997.

    Google Scholar 

  141. Garfinkel SK, Kesten S, Chapman KR, Rebuck AS. Physiologic and nonphysiologic determinants of aerobic fitness in mild to moderate asthma. Am Rev Respir Dis. 1992;145(4 Pt 1):741–5.

    Article  CAS  PubMed  Google Scholar 

  142. Weisman IM, Zeballos RJ. An integrated approach to the interpretation of cardiopulmonary exercise testing. Clin Chest Med. 1994;15(2):421–45.

    CAS  PubMed  Google Scholar 

  143. Weisman IM, Zeballos RJ. Clinical exercise testing. Clin Chest Med Dec. 2001;22(4):679–701.

    Article  CAS  Google Scholar 

  144. Carlin BW, Clausen JL, Ries AL. The effects of exercise testing on the prescription of oxygen therapy. Chest. 1994;106(2):361–5.

    Article  CAS  PubMed  Google Scholar 

  145. Dean NC, Brown JK, Himelman RB, Doherty JJ, Gold WM, Stulbarg MS. Oxygen may improve dyspnea and endurance in patients with chronic obstructive pulmonary disease and only mild hypoxemia. Am Rev Respir Dis. 1992;146:941–5.

    Article  CAS  PubMed  Google Scholar 

  146. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2000.

    Google Scholar 

  147. Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104(4):429–35.

    Article  CAS  PubMed  Google Scholar 

  148. Löllgen H, Ulmer HV, Crean P. Recommendations and standard guidelines for exercise testing: a report of the task force conference on ergometry. Eur Heart J. 1988;9(Suppl K):1–37.

    Article  Google Scholar 

  149. Shephard RJ. Tests of maximum oxygen intake. A critical review. Sports Med. 1984;1(2):99–124.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan A. Guenette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altalag, A., Road, J., Wilcox, P., Dhillon, S.S., Guenette, J.A. (2019). Exercise Testing. In: Altalag, A., Road, J., Wilcox, P., Aboulhosn, K. (eds) Pulmonary Function Tests in Clinical Practice. In Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-93650-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93650-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93649-9

  • Online ISBN: 978-3-319-93650-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics