Skip to main content

Abstract

Survey weights are a key component to producing population estimates. There are a series of steps in weighting that are carried out in most, if not all, surveys. In addition to an overview of weighting and the general theoretical approaches used to justify the use of weights in estimation, this chapter covers the first three weighting steps–base weights (inverse probability of selection), adjustments for unknown eligibility, and nonresponse adjustments. Examples of base weight calculation are presented for various designs. Methods of adjusting for nonresponse using propensity models and machine learning methods are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 4.1 for a discussion of unbiased and consistent estimates.

References

  • Breiman L. (2001). Random forests. Machine Learning 45:5–32.

    Article  Google Scholar 

  • Breiman L., Friedman J., Stone C., Olshen R. (1993). Classification and Regression Trees. Chapman & Hall, London.

    MATH  Google Scholar 

  • Cochran W. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24:295–313.

    Article  MathSciNet  Google Scholar 

  • Czajka J., Hirabayashi S., Little R. J. A., Rubin D. B. (1992). Projecting from advance data using propensity modeling: An application to income and tax statistics. Journal of Business and Economic Statistics 10:117–131.

    Google Scholar 

  • D’Agostino R. B. (1998). Propensity score methods for bias reduction for the comparison of a treatment to a non-randomized control group. Statistics in Medicine 17:2265–2281.

    Article  Google Scholar 

  • Gelman A., Carlin J., Stern H., Rubin D. B. (1995). Data Analysis. Chapman & Hall/CRC., Boca Raton, FL

    Google Scholar 

  • Harder V., Stuart E., Anthony J. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychological Methods 15(3):234–249.

    Article  Google Scholar 

  • Haziza D., Beaumont J. (2007). On the construction of imputation classes in surveys. Biometrika 75(2):25–43.

    Google Scholar 

  • Hothorn T., Buehlmann P., Dudoit S., Molinaro A., Van der Laan M. (2006). Survival ensembles. Biostatistics 7:355–373.

    Article  Google Scholar 

  • Hothorn T., Hornik K., Strobl C., Zeileis A. (2016). Party: A Laboratory for Recursive Partytioning. URL http://CRAN.R-project.org/package=party, r package version 1.2-2.

  • Judkins D., Hao H., Barrett B., Adhikari P. (2005). Modeling and polishing of nonresponse propensity. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 3159–3166.

    Google Scholar 

  • Kalton G., Maligalig D. S. (1991). A comparison of methods of weighting adjustment for nonresponse. Proceedings of the US Bureau of the Census Annual Research Conference pp 409–428.

    Google Scholar 

  • Kass G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics 29(2):119–127.

    Article  Google Scholar 

  • Kim J. J., Li J., Valliant R. (2007). Cell collapsing in poststratification. Survey Methodology 33(2):139–150.

    Google Scholar 

  • Kish L. (1965). Survey Sampling. John Wiley & Sons, Inc., New York.

    MATH  Google Scholar 

  • Kott P. S. (2012). Why one should incorporate the design weights when adjusting for unit nonresponse using response homogeneity groups. Survey Methodology 38(1):95–99.

    Google Scholar 

  • Kreuter F., Olson K. (2011). Multiple auxiliary variables in nonresponse adjustment. Sociological Methods and Research 40:311–332.

    Article  MathSciNet  Google Scholar 

  • Kreuter F., Couper M. P., Lyberg L. (2010). The use of paradata to monitor and manage survey data collection. In: Proceedings of the Survey Research Methods Section, American Statistical Association, pp 282–296.

    Google Scholar 

  • Little R. J. A. (1986). Survey nonresponse adjustments for estimates of means. International Statistical Review 54(2):139–157.

    Article  Google Scholar 

  • Little R. J. A., Rubin D. B. (2002). Statistical Analysis with Missing Data. John Wiley & Sons, Inc., New Jersey.

    Book  Google Scholar 

  • Little R. J. A., Vartivarian S. (2003). On weighting the rates in non-response weights. Statistics in Medicine 22:1589–1599.

    Article  Google Scholar 

  • Little R. J. A., Vartivarian S. (2005). Does weighting for nonresponse increase the variance of survey means? Survey Methodology 31:161–168.

    Google Scholar 

  • Lohr S. L. (1999). Sampling: Design and Analysis. Duxbury Press, Pacific Grove, CA.

    MATH  Google Scholar 

  • Lumley T. (2017). survey: analysis of complex survey samples R package v. 3.32. URL http://CRAN.R-project.org/package=survey

  • Michie D. (1989). Problems of computer-aided concept formation. In: Quinlan J. R. (ed) Applications of Expert Systems. Turing Institute Press/Addison-Wesley, pp 310–333.

    Google Scholar 

  • Morgan J. N., Sonquist J. A. (1963). Problems in the analysis of survey data and a proposal. Journal of the American Statistical Association 58:415–434.

    Article  Google Scholar 

  • Rizzo L., Kalton G., Brick J. M. (1996). A comparison of some weighting adjustments for panel nonresponse. Survey Methodology 22:43–53.

    Google Scholar 

  • Rosenbaum P., Rubin D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70:41–55.

    Article  MathSciNet  Google Scholar 

  • Royall R. M. (1976). Current advances in sampling theory: Implications for human observational studies. American Journal of Epidemiology 104:463–473.

    Article  Google Scholar 

  • Särndal C., Swensson B., Wretman J. (1992). Model Assisted Survey Sampling. Springer, New York.

    Book  Google Scholar 

  • Smith T. M. F. (1976). The foundations of survey sampling: A review. Journal of the Royal Statistical Society A 139:183–204.

    Article  MathSciNet  Google Scholar 

  • Smith T. M. F. (1984). Present position and potential developments: Some personal views, sample surveys. Journal of the Royal Statistical Society A 147:208–221.

    Article  Google Scholar 

  • Smith T. M. F. (1994) Sample surveys 1975–1990; an age of reconciliation? International Statistical Review 62:5–34.

    Article  Google Scholar 

  • Strobl C., Boulesteix A., Zeileis A., Hothorn T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8(25), URL http://www.biomedcentral.com/1471-2105/8/25

    Article  Google Scholar 

  • Strobl C., Boulesteix A., Kneib T., Augustin T., Zeileis A. (2008). Conditional variable importance for random forests. BMC Bioinformatics 9(307), URL http://www.biomedcentral.com/1471-2105/9/307

    Article  Google Scholar 

  • Stuart E. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science 25(1):1–21, URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943670/

    Article  MathSciNet  Google Scholar 

  • Therneau T., Atkinson B., Ripley B. D. (2012). rpart: Recursive Partitioning. URL http://CRAN.R-project.org/package=rpart

  • Valliant R., Dever J. A. (2018). Survey Weights: A Step-by-Step Guide to Calculation. Stata Press, College Station, TX.

    Google Scholar 

  • Valliant R., Dorfman A. H., Royall R. M. (2000). Finite Population Sampling and Inference: A Prediction Approach. John Wiley & Sons, Inc., New York.

    MATH  Google Scholar 

  • Vapnik V. N. (1995). The Nature of Statistical Learning Theory. Springer, New York.

    Book  Google Scholar 

  • Venables W. N., Ripley B. D. (2002). Modern Applied Statistics with S, 4th edn. Springer, New York.

    Book  Google Scholar 

  • Weisstein E. W. (2010). Extreme Value Distribution. URL http://mathworld.wolfram.com/ExtremeValueDistribution.html, from MathWorld–A Wolfram Web Resource.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valliant, R., Dever, J.A., Kreuter, F. (2018). Basic Steps in Weighting. In: Practical Tools for Designing and Weighting Survey Samples. Statistics for Social and Behavioral Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93632-1_13

Download citation

Publish with us

Policies and ethics