Skip to main content

The Leaf Economics Spectrum and its Underlying Physiological and Anatomical Principles

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Large variations are found in leaf morphology and physiology across species in nature, reflecting diversity in carbon fixation and growth strategies. These variations in leaf traits are not random; rather, they are tightly coordinated with each other. Leaf traits can be expressed per leaf dry mass or per leaf area. A leaf-mass basis reflects leaf economics, i.e., revenues and expenditures per unit investment of biomass, while a leaf-area basis reflects fluxes in relation to surfaces. Leaf N and P concentrations, and photosynthetic and respiration rates – all considered on a mass basis, are negatively correlated with leaf mass per area (LMA) whilst leaf lifespan is positively correlated with LMA. These correlations are summarized into a single major axis called the “leaf economics spectrum” that runs from “quick-return” to “slow-return” species. On the other hand, correlations among area-based traits are less consistent and less understood in relation to leaf economy. LMA was positively correlated with leaf N content but mostly independent from photosynthetic rates per unit leaf area. Given that N is an essential element in photosynthetic proteins and thus photosynthesis, clarifying the mechanisms why the efficiency of photosynthesis (photosynthesis per unit N) decreases with LMA is a major concern in understanding the correlations among area-based traits in relation to leaf economy. Currently available data suggest that greater amounts of cell wall are required for long-lived leaves, which reduces the efficiency of photosynthesis by lowering (1) the fraction of leaf N invested in photosynthetic proteins and (2) CO2 diffusion rates through thicker and denser mesophyll cell walls. These physiological and structural constraints are a fundamental mechanism underpinning the general correlations among leaf economic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

assimilation rate

Aarea :

net assimilation rate per unit leaf area

Amass :

net assimilation rate per unit leaf dry mass

C:

carbon

Ca :

ambient CO2 concentration

Cc :

chloroplast CO2 concentration

Ci :

intercellular CO2 concentration

CWarea :

cell wall mass per unit leaf area

CWmass :

cell wall mass per unit leaf mass

Dec:

deciduous

DM:

dry mass

Eve:

evergreen

gm :

mesophyll conductance for CO2

gs :

stomatal conductance for CO2

LES:

leaf economics spectrum

LL:

leaf lifespan

LMA:

leaf mass per area

N:

nitrogen

Narea :

leaf nitrogen (N) content per unit leaf area

Nmass :

leaf N concentration

Np :

photosynthetic N content per unit leaf area

NRub :

rubisco N content per unit leaf area

P:

phosphorus

PNUE:

photosynthetic N use efficiency measured at saturating light intensity (=Aarea/Narea)

QR:

quantile range

R:

respiration rate in the dark

Rarea :

dark respiration rate per unit leaf area

Rmass :

dark respiration rate per unit leaf dry mass

Rubisco:

ribulose bisphosphate carboxylase oxygenase

Sc :

surface area of chloroplasts exposed to intercellular airspace per unit leaf area

Sm :

surface area of mesophyll exposed to intercellular airspace per unit leaf area

SMA:

standardized major axis

TCW :

mesophyll cell wall thickness

References

  • Ackerly D (1999) Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. Oecologia 119:300–310

    Article  PubMed  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I, responses to the physical environment, encyclopedia of plant physiology, vol 12/A. Springer, Berlin, pp 57–107

    Chapter  Google Scholar 

  • Blonder B, Violle C, Bentley LP, Enquist BJ (2011) Venation networks and the origin of the leaf economics spectrum. Ecol Lett 14:91–100

    Article  PubMed  Google Scholar 

  • Blonder B, Violle C, Enquist BJ (2013) Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J Ecol 101:981–989

    Article  Google Scholar 

  • Blonder B, Vasseur F, Violle C, Shipley B, Enquist BJ, Vile D (2015) Testing models for the leaf economics spectrum with leaf and whole–plant traits in Arabidopsis thaliana. AoB Plants 7:plv049

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpita NC, McCann MC (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259

    Article  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391

    Article  CAS  Google Scholar 

  • Clements ES (1905) The relation of leaf structure to physical factors. Trans Am Microsc Soc 26:19–98

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505

    CAS  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Prentice IC et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  CAS  Google Scholar 

  • Erskine PD, Stewart GR, Schmidt S, Turnbull MH, Unkovich M, Pate JS (1996) Water availability – a physiological constraint on nitrate utilization in plants of Australian semi-arid Mulga woodlands. Plant Cell Environ 19:1149–1159

    Article  CAS  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  PubMed  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Evans JR, Seemann JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control. In: Briggs WR (ed) Photosynthesis. Alan R. Liss, Inc., New York, pp 183–205

    Google Scholar 

  • Evans JR, Terashima I (1987) Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aust J Plant Physiol 14: 59—68

    Article  CAS  Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Funct Plant Biol 13:281–292

    CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Funct Plant Biol 21:475–495

    CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of form and function. Cambridge University Press, Cambridge, pp 25–55

    Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Niinemets Ü, Galle A, Barbour MM, Centritto M, Diaz-Espejo A et al (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:45–59

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1988) The growing plant cell wall. Longman Scientific & Technical Harlow, Essex

    Google Scholar 

  • Funk JL, Glenwinkel LA, Sack L (2013) Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS One 8:e64502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Springer, Dordrecht

    Book  Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH et al (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79(2):259–281

    Article  Google Scholar 

  • Grubb PJ (2016) Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecol Divers 9:3–33

    Article  Google Scholar 

  • Grubb PJ, Grubb EA, Miyata I (1975) Leaf structure and function in evergreen trees and shrubs of Japanese warm temperate rain forest I. The structure of the lamina. Bot Mag (Tokyo) 88:197–211

    Article  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to carbon dioxide flux by analysis of the response of photosynthesis to carbon dioxide. Plant Physiol 98:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MT, Edwards EJ, Farquhar GD, Nicotra AB, Evans JR (2009) Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Environ 32:259–270

    Article  CAS  PubMed  Google Scholar 

  • Held MA, Jiang N, Basu D, Showalter AM, Faik A (2015) Plant cell wall polysaccharides: structure and biosynthesis. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer, Cham, pp 3–54

    Chapter  Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160:443–451

    Article  PubMed  Google Scholar 

  • Hikosaka K, Terashima I (1995) A model of the acclimation of photosynthesis in the leaves of C-3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ 18:605–618

    Article  CAS  Google Scholar 

  • Hikosaka K, Hanba YT, Hirose T, Terashima I (1998) Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Funct Ecol 12:896–905

    Article  Google Scholar 

  • Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  PubMed Central  Google Scholar 

  • Kieliszewski MJ, Lamport DTA, Tan L, Cannon MC (2010) Hydroxyproline-rich glycoproteins: form and function. In: Ulvskov P (ed) Annual plant reviews: plant polysaccharides, biosynthesis and bioengineering. Wiley-Blackwell, Oxford, pp 321–342

    Chapter  Google Scholar 

  • Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263

    Article  Google Scholar 

  • Kimmerer TW, Potter DA (1987) Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71:548–551

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  • Lamport DTA (1965) The protein component of primary cell walls. Adv Bot Res 2:151–218

    Article  CAS  Google Scholar 

  • Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, Bodegom PM et al (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Glob Ecol Biogeogr 24:706–717

    Article  Google Scholar 

  • Makino A, Osmond B (1991) Solubilization of ribulose-1 5-bisphosphate carboxylase from the membrane fraction of pea leaves. Photosynth Res 29:79–86

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Mae T, Ohira K (1986) Colorimetric measurement of protein stained with Coomassie brilliant blue R on sodium dodecyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide. Agric Biol Chem 50:1911–1912

    CAS  Google Scholar 

  • Mason CM, Goolsby EW, Humphreys DP, Donovan LA (2016) Phylogenetic structural equation modelling reveals no need for an ‘origin’ of the leaf economics spectrum. Ecology Letters 19:54–61

    Article  PubMed  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CV et al (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Chang Biol 17:2134–2144

    Article  Google Scholar 

  • Merino J, Field C, Mooney HA (1984) Construction and maintenance costs of Mediterranean evergreen and deciduous leaves. Acta Oecol 5:211–219

    CAS  Google Scholar 

  • Miller RE, Woodrow IE (2008) Resource availability and the abundance of an N-based defense in Australian tropical rain forests. Ecology 89:1503–1509

    Article  PubMed  Google Scholar 

  • Moorcroft PR, Hurtt G, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71:557–586

    Article  Google Scholar 

  • Moss RA, Loomis WE (1952) Absorption spectra of leaves. I. The visible spectrum. Plant Physiol 27:370–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res Atmos 108:4208

    Article  CAS  Google Scholar 

  • Niinemets Ü, Wright IJ, Evans JR (2009) Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J Exp Bot 60:2433–2449

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci U S A 104:8891–8896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Zaragoza LJ, Smith WK (1975) Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Henckel. Plant Physiol 55:1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512

    Article  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 18:419–425

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü et al (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744

    Article  CAS  PubMed  Google Scholar 

  • Peterson AG (1999) Reconciling the apparent difference between mass- and area-based expressions of the photosynthesis-nitrogen relationship. Oecologia 118:144–150

    Article  PubMed  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116:26–37

    Article  PubMed  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Read J, Sanson GD (2003) Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160:81–99

    Article  PubMed  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci U S A 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB (1998a) Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct Ecol 12:948–958

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998b) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Reu B, Proulx R, Bohn K, Dyke JG, Kleidon A, Pavlick R, Schmidtlein S (2011) The role of climate and plant functional trade-offs in shaping global biome and biodiversity patterns. Glob Ecol Biogeogr 20:570–581

    Article  Google Scholar 

  • Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013) How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. J Exp Bot 64:4053–4080

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Pearcy RW (1987) The nitrogen use efficiency of C3 and C4 plants. I. Leaf nitrogen growth and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimper AFW (1903) Plant-geography upon a physiological basis. Clarendon Press, Oxford

    Book  Google Scholar 

  • Schulze E-D, Kelliher FM, Körner C, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Article  Google Scholar 

  • Shipley B, Lechowicz MJ, Wright IJ, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541

    Article  PubMed  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair RJ, Hughes L (2010) Leaf miners: the hidden herbivores. Austral Ecol 35:300–313

    Article  Google Scholar 

  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157

    Article  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    Article  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Tosens T, Niinemets Ü, Westoby M, Wright IJ (2012) Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 63:5105–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M et al (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    Article  CAS  PubMed  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. Comstock Publishing, Ithaca

    Google Scholar 

  • Wang YP, Lu XJ, Wright IJ, Dai YJ, Rayner PJ, Reich PB (2012) Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophys Res Lett 39:L19405

    Google Scholar 

  • Warming E (1909) Oecology of plants. Clarendon Press, Oxford

    Google Scholar 

  • Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  CAS  PubMed  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Bio Rev 81:259–291

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Wright IJ, Westoby M (2002) Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol 155:403–416

    Article  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111

    PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K et al (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al (2017) Global climatic drivers of leaf size. Science 357:917–921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is partly supported by grants from JSPS KAKENHI #26711025 (YO), and from the Australian Research Council (IW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onoda, Y., Wright, I.J. (2018). The Leaf Economics Spectrum and its Underlying Physiological and Anatomical Principles. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_16

Download citation

Publish with us

Policies and ethics