Skip to main content

Cranium, Cephalic Muscles, and Homologies in Cyclostomes

  • Chapter
  • First Online:
Heads, Jaws, and Muscles

Part of the book series: Fascinating Life Sciences ((FLS))

  • 1425 Accesses

Abstract

Extant cyclostomes are jawless vertebrates and include hagfishes and lampreys. They are the closest extant relatives to jawed vertebrates (often called gnathostomes, which also include jawless extinct species) and share with them vertebrate-specific characters, like the presence of somites, neural crest cells, eyes (absent in hagfish), among others. There are also cyclostome-specific characteristics as the lingual apparatus, velum, and posterior hypophyseal process-derived cartilages. The comparison of development and anatomy between cyclostomes and gnathostomes provides insights into the evolution of the jaws and associated muscles. Furthermore, comparative anatomical and evolutionary developmental studies help to reconstruct the last common ancestor of vertebrates, cyclostomes, and gnathostomes. The evolutionary appearance of the jaw and associated muscles is of particular interest, as those are said to be one of the main reasons for the success of jawed vertebrates. Interestingly, the mechanisms to make an upper jaw are in place in cyclostomes and jawed vertebrates, but the lower jaw developmental program is only found in gnathostomes. The lower jaw is therefore a novelty that evolved in gnathostomes. Another example is the mandibular arch mesoderm and the associated neural crest cells which give rise to mandibular arch muscles and the jaws in gnathostomes, respectively. Cyclostomes have many muscles derived from the mandibular arch mesoderm, but only few can be homologized with those muscles from gnathostomes. However, those muscles that are homologous between those taxa must be present in their last common ancestor, i.e., vertebrates. Interestingly, some studies seem to indicate that mandibular arch (first arch) development was only secondarily included in the vertebrate branchial arch series, what would explain several differences in mandibular arch development between jawed and jawless vertebrates. However, this hypothesis is controversially discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N, Kuratani S (2012) Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol Dev 14:234–258

    PubMed  Google Scholar 

  • Augustinsson K-B, Fänge R, Johnels A, Östlund E (1956) Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J Physiol 131:257–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auster P, Barber K (2006) Atlantic hagfish exploit prey captured by other taxa. J Fish Biol 68:618–621

    Google Scholar 

  • Burrow CJ, Jones AS, Young GC (2005) X-ray microtomography of 410 million-year-old optic capsules from placoderm fishes. Micron 36:551–557

    PubMed  Google Scholar 

  • Cerny R, Cattell M, Sauka-Spengler T, Bronner-Fraser M, Yu F, Medeiros DM (2010) Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Nat Acad Sci 107:17262–17267

    CAS  PubMed  Google Scholar 

  • Clark AJ, Maravilla EJ, Summers AP (2010) A soft origin for a forceful bite: motorpatterns of the feeding musculature in Atlantic hagfish, Myxine glutinosa. Zoology 113:259–268

    PubMed  Google Scholar 

  • Clark AJ, Summers AP (2007) Morphology and kinematics of feeding in hagfish: possible functional advantages of jaws. J Exp Biol 210:3897–3909

    PubMed  Google Scholar 

  • Cole FJ (1907) XXVI.—a monograph on the general morphology of the Myxinoid fishes, based on a study of Myxine. Part II. The anatomy of the muscles. Earth Env Sci Trans R Soc Edinb 45:683–757

    Google Scholar 

  • Couly GF, Coltey PM, Douarin NML (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    CAS  PubMed  Google Scholar 

  • Damas H (1944) Recherches sur la developpement de Lampetra fluviatilis L. Contribution a l’etude de la cephalogenese des vertebres. Arch Biol Paris 55:1–289

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    CAS  PubMed  Google Scholar 

  • Depew MJ, Lufkin T, Rubenstein JL (2002) Specification of jaw subdivisions by Dlx genes. Science 298:381–385

    CAS  PubMed  Google Scholar 

  • Depew MJ, Simpson CA, Morasso M, Rubenstein JLR (2005) Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. J Anat 207:501–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diogo R, Abdala V (2010) Muscles of vertebrates—comparative anatomy, evolution, homologies and development. CRC Press; Science Publisher, Enfield, New Hampshire

    Google Scholar 

  • Diogo R, Ziermann JM (2015) Development, metamorphosis, morphology, and diversity: the evolution of chordate muscles and the origin of vertebrates. Dev Dyn 244:1046–1057

    PubMed  Google Scholar 

  • Diogo R, Kelly RG, Christiaen L, Levine M, Ziermann JM, Molnar JL, Noden DM, Tzahor E (2015a) A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diogo R, Ziermann JM, Linde-Medina M (2015b) Specialize or risk disappearance - empirical evidence of anisomerism based on comparative and developmental studies of gnathostome head and limb musculature. Biol Rev 90:964–978

    PubMed  Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge at the University Press, London

    Google Scholar 

  • Ericsson R, Knight R, Johanson Z (2013) Evolution and development of the vertebrate neck. J Anat 222:67–78

    PubMed  Google Scholar 

  • Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134

    Google Scholar 

  • Fürbringer P (1875) Untersuchungen zur vergleichenden Anatomie der Muskulatur des Kopfskelets der Cyclostomen. Jenaer Zeitschriften

    Google Scholar 

  • Gai Z, Donoghue PC, Zhu M, Janvier P, Stampanoni M (2011) Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476:324

    CAS  PubMed  Google Scholar 

  • Gee H (2018) Across the bridge: understanding the origin of the vertebrates. University of Chicago Press, Chicago

    Google Scholar 

  • Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443:981–984

    CAS  PubMed  Google Scholar 

  • Gillis JA, Modrell MS, Baker CV (2013) Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton. Nat Commun 4:1436

    PubMed  PubMed Central  Google Scholar 

  • Gillis JA, Tidswell OR (2017) The origin of vertebrate gills. Curr Biol 27:729–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. Dover Publications Inc. P, USA

    Google Scholar 

  • Green SA, Simoes-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520:474–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardisty M, Potter I, Hilliard R (1989) Physiological adaptations of the living agnathans. Earth Env Sci Trans R Soc Edinb 80:241–254

    Google Scholar 

  • Harel I, Tzahor E (2013) Head muscle development. In: McLoon LK, Andrade FH (eds) Craniofacial muscles. Springer, New York, pp 11–28

    Google Scholar 

  • Heimberg AM, Cowper-Sal lari R, Sémon M, Donoghue PCJ, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Nat Acad Sci 107:19379–19383

    CAS  PubMed  Google Scholar 

  • Heude É, Bouhali K, Kurihara Y, Kurihara H, Couly G, Janvier P, Levi G (2010) Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc Nat Acad Sci 107:11441–11446

    CAS  PubMed  Google Scholar 

  • Higashiyama H, Kuratani S (2014) On the maxillary nerve. J Morphol 275:17–38

    PubMed  Google Scholar 

  • Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM (2011) Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 358:102–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann FG, Opazo JC, Storz JF (2010) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc Nat Acad Sci 107:14274–14279

    CAS  PubMed  Google Scholar 

  • Holland ND, Chen J (2001) Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. BioEssays 23:142–151

    CAS  PubMed  Google Scholar 

  • Holland ND, Holland LZ, Honma Y, Fujii T (1993) Engrailed expression during development of a lamprey, Lampetra japonica: a possible clue to homologies between agnathan and gnathostome muscles of the mandibular arch. Develop Growth Differ 35:153–160

    Google Scholar 

  • Holmgren N (1946) On two embryos of Myxine glutinosa. Acta Zooligica XXVII:1–91

    Google Scholar 

  • Holzer G, Laudet V (2017) New insights into vertebrate thyroid hormone receptor evolution. Nucl Recept Res 4

    Google Scholar 

  • Horigome N, Myojin M, Ueki T, Hirano S, Aizawa S, Kuratani S (1999) Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol 207:287–308

    CAS  PubMed  Google Scholar 

  • Huxley TH (1876) The nature of the craniofacial apparatus of Petromyzon. J Anat Physiol 10:412–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janvier P (1996) Early vertebrates. Oxford University Press, Clarendon

    Google Scholar 

  • Janvier P (2007) Homologies and evolutionary transitions in early vertebrate history. In: Anderson JS, Sues HD (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 57–121

    Google Scholar 

  • Janvier P (2008) Early jawless vertebrates and cyclostome origins. Zool Sci 25:1045–1056

    PubMed  Google Scholar 

  • Johnels AG (1948) On the development and morphology of the skeleton of the head of Petromyzon. Acta Zool 29:139–279

    Google Scholar 

  • Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242

    PubMed  Google Scholar 

  • Kuraku S, Hoshiyama D, Katoh K, Suga H, Miyata T (1999) Monophyly of lampreys and hagfishes supported by nuclear DNA–coded genes. J Mol Evol 49:729–735

    CAS  PubMed  Google Scholar 

  • Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S (2010) Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol 341:315–323

    CAS  PubMed  Google Scholar 

  • Kuratani S (2004) Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. J Anat 205:335–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuratani S (2005a) Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zool Sci 22:1–19

    PubMed  Google Scholar 

  • Kuratani S (2005b) Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 207:489–499

    PubMed  PubMed Central  Google Scholar 

  • Kuratani S (2008a) Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Develop Growth Differ 50:S189–S194

    Google Scholar 

  • Kuratani S (2008b) Is the vertebrate head segmented?—evolutionary and developmental considerations. Integr Comp Biol 48:647–657

    PubMed  PubMed Central  Google Scholar 

  • Kuratani S (2012) Evolution of the vertebrate jaw from developmental perspectives. Evol Dev 14:76–92

    PubMed  Google Scholar 

  • Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F (2013) Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 222:41–55

    PubMed  Google Scholar 

  • Kuratani S, Horigome N, Hirano S (1999) Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol 210:381–400

    CAS  PubMed  Google Scholar 

  • Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34:175–183

    CAS  PubMed  Google Scholar 

  • Kuratani S, Murakami Y, Nobusada Y, Kusakabe R, Hirona S (2004) Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron japonicum: comparative morphology and development of the Gnathostome jaw with special reference to the nature of the trabecula cranii. J Exp Zool (Mol Dev Evol) 302B:458–468

    Google Scholar 

  • Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond Ser B Biol Sci 356:1615–1632

    CAS  Google Scholar 

  • Kuratani S, Oisi Y, Ota KG (2016) Evolution of the vertebrate cranium: viewed from hagfish developmental studies. Zool Sci 33:229–238

    PubMed  Google Scholar 

  • Kusakabe R, Kuraku S, Kuratani S (2011) Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 350:217–227

    CAS  PubMed  Google Scholar 

  • Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834

    PubMed  Google Scholar 

  • Leach WJ (1944) The archetypal position of amphioxus and ammocoetes and the role of endocrines in chordate evolution. American Naturalist, pp 341–357

    Google Scholar 

  • Lescroart F, Kelly RG, Le Garrec J-F, Nicolas J-F, Meilhac SM, Buckingham M (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279

    CAS  PubMed  Google Scholar 

  • Lours-Calet C, Alvares LE, El-Hanfy AS, Gandesha S, Walters EH, Sobreira DR, Wotton KR, Jorge EC, Lawson JA, Lewis AK (2014) Evolutionarily conserved morphogenetic movements at the vertebrate head–trunk interface coordinate the transport and assembly of hypopharyngeal structures. Dev Biol 390:231–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallatt J (1984) Early vertebrate evolution: pharyngeal structure and the origin of gnathostomes. J Zool 204:169–183

    Google Scholar 

  • Mallatt J (1996) Ventilation and the origin of jawed vertebrates: a new mouth. Zool J Linnean Soc 117:329–404

    Google Scholar 

  • Mallatt J (1997a) Crossing a major morphological boundary: the origin of jaws in vertebrates. Zoology 100:128–140

    Google Scholar 

  • Mallatt J (1997b) Shark pharyngeal muscles and early vertebrate evolution. Acta Zool 78:279–294

    Google Scholar 

  • Mallatt J (2008) The origin of the vertebrate jaw: neoclassical ideas versus newer, development-based ideas. Zool Sci 25:990–998

    PubMed  Google Scholar 

  • Mallatt J, Chen J (2003) Fossil sister group of craniates: predicted and found. J Morphol 258:1–31

    PubMed  Google Scholar 

  • Marinelli W, Strenger A (1956a) Vergleichende Anatomie und Morphologie der Wirbeltiere: von W. Marinelli und A. Strenger. Myxine glutinosa (L.). Franz Deuticke:80

    Google Scholar 

  • Marinelli W, Strenger A (1956b) Vergleichende Anatomie und Morphologie der Wirbeltiere: von W. Marinelli und A. Strenger. Myxine glutinosa (L.). Franz Deuticke:80

    Google Scholar 

  • Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCauley DW, Bronner-Fraser M (2003) Neural crest contributions to the lamprey head. Development 130:2317–2327

    CAS  PubMed  Google Scholar 

  • McNamara KJ (1990) The role of heterochrony in evolutionary trends. Evolutionary Trends. K. J. McNamara, London

    Google Scholar 

  • Medeiros DM, Crump JG (2012) New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw. Dev Biol 371:121–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CT, Yelon D, Stainier DYR, Kimmel CB (2003) Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development 130:1353–1365

    CAS  PubMed  Google Scholar 

  • Minchin JE, Williams VC, Hinits Y, Low S, Tandon P, Fan C-M, Rawls JF, Hughes SM (2013) Oesophageal and sternohyal muscle fibres are novel Pax3-dependent migratory somite derivatives essential for ingestion. Development 140:2972–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minoux M, Rijli FM (2010) Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137:2605–2621

    CAS  PubMed  Google Scholar 

  • Miyashita T (2012) Comparative analysis of the anatomy of the Myxinoidea and the ancestry of early vertebrate lineages. M.Sc. In: University of Alberta

    Google Scholar 

  • Miyashita T (2016) Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev 91:611–657

    PubMed  Google Scholar 

  • Miyashita T, Coates MI (2015) Hagfish embryology. Hagfish Biol 95

    Google Scholar 

  • Modrell MS, Hockman D, Uy B, Buckley D, Sauka-Spengler T, Bronner ME, Baker CV (2014) A fate-map for cranial sensory ganglia in the sea lamprey. Dev Biol 385:405–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW, Mallatt JM (1980) Feeding of larval lamprey. Can J Fish Aquat Sci 37:1658–1664

    Google Scholar 

  • Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    CAS  PubMed  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    CAS  PubMed  Google Scholar 

  • Oisi Y, Ota KG, Fujimoto S, Kuratani S (2013a) Development of the chondrocranium in hagfishes, with special reference to the early evolution of vertebrates. Zool Sci 30:944–961

    PubMed  Google Scholar 

  • Oisi Y, Ota KG, Kuraku S, Fujimoto S, Kuratani S (2013b) Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493:175–180

    CAS  PubMed  Google Scholar 

  • Ota KG, Fujimoto S, Oisi Y, Kuratani S (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2:373

    PubMed  PubMed Central  Google Scholar 

  • Ota KG, Kuraku S, Kuratani S (2007) Hagfish embryology with reference to the evolution of the neural crest. Nature 446:672–675

    CAS  PubMed  Google Scholar 

  • Ota KG, Kuratani S (2008) Developmental biology of hagfishes, with a report on newly obtained embryos of the Japanese inshore hagfish, Eptatretus burgeri. Zool Sci 25:999–1011

    PubMed  Google Scholar 

  • Parker HJ, Bronner ME, Krumlauf R (2014) A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 514:490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poole JRM, Paganini J, Pontarotti P (2017) Convergent evolution of the adaptive immune response in jawed vertebrates and cyclostomes: an evolutionary biology approach based study. Dev Com Immunol 75:120–126

    Google Scholar 

  • Potter I (1980) The Petromyzoniformes with particular reference to paired species. Can J Fish Aquat Sci 37:1595–1615

    Google Scholar 

  • Rijli FM, Gavalas A, Chambon P (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int J Dev Biol 42:393–401

    CAS  PubMed  Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349

    CAS  PubMed  Google Scholar 

  • Rinon A, Lazar S, Marshall H, Büchmann-Møller S, Neufeld A, Elhanany-Tamir H, Taketo MM, Sommer L, Krumlauf R, Tzahor E (2007) Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–3075

    CAS  PubMed  Google Scholar 

  • Romer AS (1950) The vertebrate body. WB Saunders, London

    Google Scholar 

  • Rovainen CM (1996) Feeding and breathing in lampreys. Brain Behav Evol 48:297–305

    CAS  PubMed  Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138:2401–2415

    CAS  PubMed  Google Scholar 

  • Sato T, Kurihara Y, Asai R, Kawamura Y, Tonami K, Uchijima Y, Heude E, Ekker M, Levi G, Kurihara H (2008) An endothelin-1 switch specifies maxillomandibular identity. Proc Natl Acad Sci 105:18806–18811

    CAS  PubMed  Google Scholar 

  • Sauka-Spengler T, Le Mentec C, Lepage M, Mazan S (2002) Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis. Gene Expr Patterns 2:99–103

    CAS  PubMed  Google Scholar 

  • Schilling TF, Piotrowski T, Grandel H, Brand M, Heisenberg C-P, Jiang Y-J, Beuchle D, Hammerschmidt M, Kane DA, Mullins MC, Eeden FJM, Kelsh RN, Furutani-Seiki M, Granato M, Haffter P, Odenthal J, Warga RM, Trowe T, Nüsslein-Volhard C (1996) Jaw and branchial arch mutants in zebrafish I: branchial arches. Development 123:329–344

    CAS  PubMed  Google Scholar 

  • Shigetani Y, Sugahara F, Kawakami Y, Murakami Y, Hirano S, Kuratani S (2002) Heterotopic shift of epithelial-Mesenchymal interactions in vertebrate jaw evolution. Science 296:1316–1319

    CAS  PubMed  Google Scholar 

  • Shigetani Y, Sugahara F, Kuratani S (2005) A new evolutionary scenario for the vertebrate jaw. BioEssays 27:331–338

    CAS  PubMed  Google Scholar 

  • Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci 104:5907–5912

    CAS  PubMed  Google Scholar 

  • Song J, Boord R (1993) Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates. Cells Tissues Organs 148:139–149

    CAS  Google Scholar 

  • Sugahara F, Murakami Y, Adachi N, Kuratani S (2013) Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes? Curr Opin Genet Dev 23:475–483

    CAS  PubMed  Google Scholar 

  • Suzuki DG, Fukumoto Y, Yoshimura M, Yamazaki Y, Kosaka J, Kuratani S, Wada H (2016) Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. Zool Lett 2:1

    Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    CAS  PubMed  Google Scholar 

  • Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 308:606–620

    CAS  PubMed  Google Scholar 

  • Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Lamprey Hox genes and the evolution of jaws. Nature:1–2

    Google Scholar 

  • Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R (2010) The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137:2961–2971

    CAS  PubMed  Google Scholar 

  • Tiecke E, Matsuura M, Kokubo N, Kuraku S, Kusakabe R, Kuratani S, Tanaka M (2007) Identification and developmental expression of two Tbx1/10-related genes in the agnathan Lethenteron japonicum. Dev Genes Evol 217:691–697

    CAS  PubMed  Google Scholar 

  • Tretjakoff D (1926) Das Skelett und die Muskulatur im Kopfe des Flussneunauges. Z Wiss Zool 128:267–304

    Google Scholar 

  • Tulenko FJ, McCauley DW, MacKenzie EL, Mazan S, Kuratani S, Sugahara F, Kusakabe R, Burke AC (2013) Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc Natl Acad Sci 110:11899–11904

    CAS  PubMed  Google Scholar 

  • Wada N, Nohno T, Kuratani S (2011) Dual origins of the prechordal cranium in the chicken embryo. Dev Biol 356:529–540

    CAS  PubMed  Google Scholar 

  • Yalden D (1985) Feeding mechanisms as evidence for cyclostome monophyly. Zool J Linnean Soc 84:291–300

    Google Scholar 

  • Youson J (1980) Morphology and physiology of lamprey metamorphosis. Can J Fish Aquat Sci 37:1687–1710

    Google Scholar 

  • Youson JH (1997) Is lamprey metamorphosis regulated by thyroid hormones? Am Zool 37:441–460

    CAS  Google Scholar 

  • Ziermann JM, Diogo R, Noden DM (2018) Neural crest and the patterning of vertebrate craniofacial muscles. Genesis:e23097

    Google Scholar 

  • Ziermann JM, Freitas R, Diogo R (2017) Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Front Zool 14:1–17. https://doi.org/10.1186/s12983-12017-10216-y

    Article  Google Scholar 

  • Ziermann JM, Miyashita T, Diogo R (2014) Cephalic muscles of cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linnean Soc 172:771–802

    Google Scholar 

Download references

Acknowledgments

I would like to thank Shigeru Kuratani and Philippe Janvier for their constructive reviews which improved the chapter.

Further Reading

From the extensive literature list in this chapter, I suggest for further reading on the relevance of cyclostomes to understand vertebrate and gnathostome evolution: Janvier (2008), Kuratani (2008a), and Miyashita (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine M. Ziermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ziermann, J.M. (2019). Cranium, Cephalic Muscles, and Homologies in Cyclostomes. In: Ziermann, J., Diaz Jr, R., Diogo, R. (eds) Heads, Jaws, and Muscles. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_3

Download citation

Publish with us

Policies and ethics