Skip to main content

Ultrasound Technology in Dairy Processing

  • Chapter
  • First Online:
Ultrasound Technology in Dairy Processing

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

High-intensity ultrasound technology has been vastly utilized as a processing method in a number of dairy applications in preference to traditional thermal treatments in recent years. Acoustic cavitation generates physical forces such as acoustic streaming, acoustic radiation, shear, micro-jetting and shockwaves. These forces are utilized in specific dairy applications including emulsification, filtration, functionality modifications, microbial inactivation, homogenization, crystallization and the separation of fat. Although some of these applications are adopted by industry for large-scale operations, most are still limited to laboratory scale. Due to its widespread potential, it is becoming increasingly clear that ultrasound technology has huge potential as an energy efficient emerging technology across the dairy sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Hayat E, Karangwa M, Bashari M, Zhang X (2013) An overview of ultrasound assisted food grade nanoemulsions. Food Eng Rev 5:139–157

    Article  CAS  Google Scholar 

  • Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (1999) Emulsification by ultrasound: droplet size distribution and stability. Ultrason Sonochem 6:75–83

    Article  PubMed  CAS  Google Scholar 

  • Abismail B, Conselier JP, Wilhelm AM, Delma H, Gourdon C (2000) Emulsification processes: online study by multiple light scattering measurements. Ultrason Sonochem 7:187–192

    Article  PubMed  CAS  Google Scholar 

  • Acton E, Morris GJ (1992) Methods and apparatus for the control of solidification in liquids. US Patent No. WO99/20420

    Google Scholar 

  • Al-Hilphy ARS, Niamak AK, Al-Temimi AB (2012) Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. Int J Food Sci Nutr Eng 2:113–118

    Article  Google Scholar 

  • Almanza-Rubio J, Gutierrez-Mendez N, Leal-Ramos M, Sepulveda D, Salmeron I (2016) Modification of the textural and rheological properties of cream cheese using thermosonicated milk. J Food Eng 168:223–230

    Article  Google Scholar 

  • Alzamora SM, Guerrero SN, Schenk M, Raffellini S, Lopez-Malo A (2011) Inactivation of microorganisms. In: Feng H, Barbosa-Canovas GD, Weiss J (eds) Ultrasound technologies for food processing and bioprocessing. Spinger, New York

    Google Scholar 

  • Anema SG, Klostermeyer H (1997) Heat induced, pH dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 °C. J Agric Food Chem 45:1108–1115

    Article  CAS  Google Scholar 

  • Arnold G, Leiteritz L, Zahn S, Rohm H (2009) Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. Int Dairy J 19:314–320

    Article  CAS  Google Scholar 

  • Arroyo C, Cebrián G, Pagán R, Condón S (2011) Inactivation of Cronobacter sakazakii by ultrasonic waves under pressure in buffer and foods. Int J Food Microb 144:446–454

    Article  CAS  Google Scholar 

  • Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrason Sonochem 18:864–872

    Article  PubMed  CAS  Google Scholar 

  • Ashokkumar M, Mason TJ (2007) Sonochemistry in Kirk-Othmer encyclopedia of chemical technology. Wiley

    Google Scholar 

  • Ashokkumar M, Kentish S, Lee J, Zisu B, Palmer M, Augustin M (2009a) Processing of dairy ingredients by ultrasonication. PCT Int Appl. WO2009/079691A1

    Google Scholar 

  • Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Kentish S (2009b) Sonication increases the heat stability of whey proteins. J Dairy Sci 92:5353–5356

    Article  PubMed  CAS  Google Scholar 

  • Barukcic I, Jakpovic K, Herceg Z, Karlovic S, Bozanic R (2015) Influence of high intensity ultrasound on microbial reduction, physic-chemical characteristics and fermentation of sweet whey. Innov Food Sci Emerg Technol 27:94–101

    Article  CAS  Google Scholar 

  • Beatty N, Walsh M (2016) Influence of thermosnication on Geobacillus stearothermophilus inactivation in skim milk. Int Dairy J 61:10–17

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Barbosa-Cánovas GV (2008) Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication. Innov Food Sci Emerg Technol 9:176–185

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Mawson R, Barbosa-Cánovas GV (2008) Microstructure of fat globules in whole milk after thermosonication treatment. J Food Sci 73:325–332

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV, Mawson R, Versteeg K (2009a) Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermosonication treatments. J Food Qual 32:283–302

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Corradini MG, Mawson R, Barbosa-Cánovas GV (2009b) Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emerg Technol 10:172–178

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV (2010) Processing of soft Hispanic cheese using thermosonicated milk: a study of physicochemical characteristics and storage life. J Food Sci 75:5548–5558

    Article  CAS  Google Scholar 

  • Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV (2011) Ultrasound applications in food processing. In: Feng H, Barbosa-Cánovas GV, Weis J (eds) Ultrasound technologies for food and bioprocessing. Springer, pp 65–105

    Google Scholar 

  • Bosiljkov T, Tripalo B, Brincic M, Jezek D, Karlovic S, Jagust I (2011) Influence of high intensity ultrasound with different probe diameter on the degree of homogenization (variance) and physical properties of cow milk. Afr J Biotech 10:34–41

    Google Scholar 

  • Bund RK, Pandit AB (2007a) Sonocrystalisation: effect on lactose recovery and crystal habit. Ultrason Sonochem 14:143–152

    Article  PubMed  CAS  Google Scholar 

  • Bund RK, Pandit AB (2007b) Rapid lactose recovery from paneer whey using sonocrystalisation: a process optimization. Chem Eng Process 46:846–850

    Article  CAS  Google Scholar 

  • Caia M, Wanga S, Zheng Y, Lianga H (2009) Effects of ultrasound on ultrafiltration of Radix astragalus extract and cleaning fouled membranes. Sep Purif Technol 68:351–356

    Article  CAS  Google Scholar 

  • Calligaris S, Plazzotta S, Bot F, Grasselli S, Malchiodi A, Anese M (2016) Nanoemulsion preparation by combining high pressure homogenization and high power ultrasound at low energy densities. Food Res Int 83:25–30

    Article  CAS  Google Scholar 

  • Cameron M, McMaster LD, Britz TJ (2009) Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci Technol 89:83–98

    Article  CAS  Google Scholar 

  • Canselier JR, Delmas H, Wilheim AM, Abosmail B (2002) Ultrasound emulsification—an overview. J Dispersion Sci Technol 23:333–349

    Article  CAS  Google Scholar 

  • Carcel JA, Benedito J, Sanjuan N, Sanchez E (2009) Application of ultrasound in industry. Alimnetacion Equipos y Technol 135–141

    Google Scholar 

  • Cavalieri F, Ashokkumar M, Grieser F, Caruso F (2008) Ultrasonic synthesis of stable and functional lysozyme microbubbles. Langmuir 24:10078–10083

    Article  PubMed  CAS  Google Scholar 

  • Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2011) Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrates. Ultrason Sonochem 18:951–957

    Article  PubMed  CAS  Google Scholar 

  • Chandrapala J, Martin GJ, Zisu B, Kentish S, Ashokkuamr M (2012a) The effect of ultrasound on casein micelle integrity. J Dairy Sci 95:6882–6890

    Article  PubMed  CAS  Google Scholar 

  • Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2012b) A possible mechanism to understand the ultrasound induced heat stability of whey protein concentrates. Int Non thermal Workshop, Melbourne

    Google Scholar 

  • Chandrapala J, Zisu B, Kentish S, Ahokkumar M (2013) Influence of ultrasound on chemically induced gelation of micellar casein systems. J Dairy Res 1:1–6

    Google Scholar 

  • Chandrapala J, Martin GJ, Kentish S, Ashokkuamr M (2014a) Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrason Sonochem 21:1658–1665

    Article  PubMed  CAS  Google Scholar 

  • Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M (2014b) Sonication of milk protein solutions prior to spray drying and the subsequent effects on powders during storage. J Food Eng 141:122–127

    Article  CAS  Google Scholar 

  • Chandrapala J, Ong L, Zisu B, Gras S, Kentish S, Ahokkumar M (2016) The effect of sonication and high pressure homogenization on the properties of pure cream. Innov Food Sci Emerg Technol 33:298–307

    Article  CAS  Google Scholar 

  • Chemat F, Zill-e-Huma S, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Lucey JA, Singh H (1999) Rheological properties of acid milk gels affected by the nature of the fat globule surface material and heat treatment of milk. Int Dairy J 9:537–546

    Article  CAS  Google Scholar 

  • Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41(8):595–604

    Article  PubMed  CAS  Google Scholar 

  • Cregenzan-Alberti O, Halpin R, Whyte P, Lyng J, Noci F (2014) Suitability of ccRSM as a tool to predict inactivation and its kinetics for E. coli, S. aureus and P. fluorescenc in homogeniased milk treated by manothermosonication. Food Control 39:41–48

    Article  CAS  Google Scholar 

  • D’amico D, Silk TM, Wu J, Guo M (2006) Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Prot 69:556–563

    Article  PubMed  Google Scholar 

  • Devi S, Ashokkumar M, Grieser F (2005) The influence of acoustic power on multibubble sonoluminence in aqueous solution containing organic solutes. J Phys Chem B 109:20044–20050

    Article  CAS  Google Scholar 

  • Dhumal R, Birandar SV, Paradkar AR, York P (2008) Ultrasound assisted engineering of lactose crystals. Pharm Res 25(12):2835–2839

    Article  PubMed  CAS  Google Scholar 

  • Dincer TD, Zisu B, Vallet CGMR, Jayasena V, Palmer M, Weeks M (2014) Sonocrystallisation of lactose in an aqueous system. Int Dairy J 35:43–46

    Article  CAS  Google Scholar 

  • Earnshaw RG (1998) Ultrasound: a new opportunity for food preservation. In: Povey MJW, Mason TJ (eds) Ultrasound in food processing. Blackie Academic & Professional, London, pp 183–192

    Google Scholar 

  • Engin B, Karagul Yuceer Y (2012) Effects of ultraviolet light and ultrasound on microbial quality and aroma-active components of milk. J Sci Food Agri 92(6):1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Ertugay MF, Sngul M, Sengul M (2004) Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turkish J Vet Anim Sci 28:303–308

    Google Scholar 

  • Evelyn E, Silva FVM (2015) Thermosonicatio versus thermal processing of skim milk and beef slurry: modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores. Food Res Int 67:67–74

    Article  Google Scholar 

  • Freitas S, Hielscher G, Merkle HP, Gauder B (2006) Continuous contact and contamination free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrason Sonochem 13:76–85

    Article  PubMed  CAS  Google Scholar 

  • Frydenberg R, Hammershoj M, Aandersen U, Greve M, Wiking L (2016a) Protein denaturation of whey protein isolates induced by high intensity ultrasound during heat gelation. Food Chem 19:415–423

    Article  CAS  Google Scholar 

  • Frydenberg R, Hammershoj M, Aandersen U, Greve M, Wiking L (2016b) High intensity ultrasound effects on heat induced whey proteins isolate gels depend on αLA:βLG ratio. Int Dairy J 56:1–3

    Article  CAS  Google Scholar 

  • Furtado G, Mantovani R, Consoli L, Hubinger M, Cunha R (2017) Structural and emulsifying properties of sodium caseinate and lactoferrin influenced by ultrasound process. Food Hydrocolloids 63:178–188

    Article  CAS  Google Scholar 

  • Fyfe K, Kravchuk O, Lea T, Nguyen T, Deeth H, Bhandari B (2010) Storage induced changes to high protein powders: influence on surface properties of solubility. J Sci Food Agric 91:2566–2575

    Article  CAS  Google Scholar 

  • Gabriel AA (2015) Inactivation of listeria monocytogens in milk by multi frequency power ultrasound. J Food Process Preserv 39:846–853

    Article  CAS  Google Scholar 

  • Gera N, Doores S (2011) Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J Food Sci 76:M111–M119

    Article  PubMed  CAS  Google Scholar 

  • Gondrexon N, Cheze L, Jin Y, Legay M, Tissot Q, Hengl N, Baup S, Boldo P, Pignon F, Talansier E (2015) Intensification of heat and mass transfer by ultrasound: application of heat exchanger and membrane separation processes. Ultrason Sonochem 25:40–50

    Article  PubMed  CAS  Google Scholar 

  • Guerrero S, López-Malo A, Alzamora SM (2001) Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innov Food Sci Emerg Technol 2:31–39

    Article  Google Scholar 

  • Halpin R, Duffy L, Cregenzan-Alberti O, Lyng J, Noci F (2013) Combined heat treatment with mild heat, manothermosonication and pulsed electric fields reduces microbial growth in milk. Food Control 34:364–371

    Article  CAS  Google Scholar 

  • Heffernan S, Kelly A, Mulvihill D, Lambrich U, Schuchmann H (2011) Efficiency of a range of homogenization technologies in the emulsification and stabilization of cream liqueurs. Innov Food Sci Emerg Technol 12:628–634

    Article  CAS  Google Scholar 

  • Hem SL (1967) The effect of ultrasonic vibrations on crystallization processes. Ultrason 5(4):202–207

    Article  CAS  Google Scholar 

  • Herceg Z, Jambrak A, Lelas V, Thagard S (2012a) The effect of high intensity ultrasound treatment on the amount of S. aureous and E. coli in milk. Food Technol Biotechnol 50:46–52

    CAS  Google Scholar 

  • Herceg Z, Juraga E, Sabota-Salamon B, Jambraka A (2012b) Inactivation of mesophillic bacteria in milk by means of high intensity ultrasound using response surface methodology. Czech J Food Sci 30:108–117

    Article  Google Scholar 

  • Horne DS, Davidson CM (2003) Direct observation of decrease in size of casein micelles during initial stages of renneting of skim milk. Int Dairy J 3:61–71

    Article  Google Scholar 

  • Hughes DE, Nyborg L (1962) Cell disruption by ultrasound. Science 138:108–114

    Article  PubMed  CAS  Google Scholar 

  • Jambrak AR, Mason T, Lelas V, Herceg Z, Hereg L (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein dispersion. J Food Eng 86:281–287

    Article  CAS  Google Scholar 

  • Jambrak AR, Mason T, Lelas V, Kresic G (2010) Ultrasonic effect on physico-chemical and functional properties of α-Lactalbumin. LWT Food Sci Technol 43:254–262

    Article  CAS  Google Scholar 

  • Jin Y, Hengl N, Baup S, Pignon F, Gondreson N, Sztucki M, Gesan-Guiziou G, Magnin A, Abyan M, Karraouch M, Bleses D (2014) Effects of ultrasound on corss-flow ultrafiltration of skim milk: charactorisation from macro-scale to nano scale. J Membr Sci 470:205–218

    Article  CAS  Google Scholar 

  • Juang R, Lin K (2004) Ultrasound assisted production of w/o emulsions on liquid surfactant membrane processes. Colloids Surf, A 238:43–49

    Article  CAS  Google Scholar 

  • Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin M (2011) Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason Sonochem 18:963–973

    Article  PubMed  CAS  Google Scholar 

  • Juliano P, Temmel S, Rout M, Swiergon P, Mawson R, Knoerzer K (2013) Creaming enhancement in a litre scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason Sonochem 20:52–62

    Article  PubMed  CAS  Google Scholar 

  • Juliano P, Torkamani AE, Leong T, Kolb V, Watkins P, Ajlouni S, Singh TK (2014) Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrason Sonochem 21(6):2165–2175

    Article  PubMed  CAS  Google Scholar 

  • Juraga E, Salamon BS, Herceg Z (2011) Application of high intensity ultrasound treatment on enterobateria count in milk. Mljekarstvo 61:125–134

    Google Scholar 

  • Kinsella J (1981) Functional properties of proteins: possible relationships between structure and function in foams. Food Chem 7(4):273–288

    Article  CAS  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D (2004) Application and potential of ultrasonics in food processing. Trend Food Sci Technol 15:261–266

    Article  CAS  Google Scholar 

  • Koh LLA, Chandrapala J, Zisu B, Martin GJ, Kentish S, Ashokkumar M (2014a) A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey proteins solutions. Food Bioprocess Technol 7:556–566

    Article  CAS  Google Scholar 

  • Koh LLA, Nguyen H, Chandrapala J, Zisu B, Martin GJ, Kentish S, Ashokkumar M (2014b) The use of ultrasonic feed pre-treatment ot reduce membrane fouling in whey ultrafiltration. J Membr Sci 453:230–239

    Article  CAS  Google Scholar 

  • Kresic G, Lelas V, Jambrak AR, Herceg Z, Brincic SR (2008) Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J Food Eng 87:64–73

    Article  CAS  Google Scholar 

  • Lamb H, Caflisch R (1993) Hydrodynamics. Cambridge University Press

    Google Scholar 

  • Lamminen M, Walker H, Weavers L (2004) Mechanisms and factors influencing the ultrasonic cleaning of particle fouled ceramic membranes. J Membr Sci 237:213–223

    Article  CAS  Google Scholar 

  • Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014a) Ultrason Sonochem 21:1289

    Article  PubMed  CAS  Google Scholar 

  • Leong T, Juliano P, Johansson L, Mawson R, McArthur SL, Manasseh R (2014b) Ultrason Sonochem 21:2092–2096

    Article  PubMed  CAS  Google Scholar 

  • Leong TSH, Zhou M, Kukan N, Ashokkumar M, Martin G (2017) Preparation of water-in-oil-in water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids 63:685–695

    Article  CAS  Google Scholar 

  • Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014a) Ultrasound effects on assembly of casein micelles in reconstiteud skim milk. J Dairy Res 81(2):146–155

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Juliano P, Williams R, Niere J, Augustin M (2014b) Ultrasound improves the renneting properties of milk. Ultrason Sonochem 21(6):2131–2137

    Article  PubMed  CAS  Google Scholar 

  • Lujan-Facundo M, Mendoza-Roca J, Cuartas-Uribe B, Alvarez-Blanco S (2016a) Cleaning efficiency enhancement of ultrasounds for membranes use din dairy industries. Ultrason Sonochem 33: 18–25

    Google Scholar 

  • Lujan-Facundo M, Mendoza-Roca J, Cuartas-Uribe B, Alvarez-Blanco S (2016b) Study of membrane cleaning with and without ultrasound application after fouling with three model dairy solutions. Food Bioprod Process 100:36–46

    Article  CAS  Google Scholar 

  • Madadlou A, Mousavi ME, Emam-Djomek Z, Ehsani M, Sheehan D (2009) Sonodisruption of reassembled casein micelles at different pH values. Ultrason Sonochem 16:644–648

    Article  PubMed  CAS  Google Scholar 

  • Marchesini G, Fasolato L, Novelli E, Balzan S, Contiero B, Montemurro F, Andrighetto I, Segato S (2015) Ultrasonic inactivation of microorganisms: a compromise between lethal capacity and sensory quality of milk. Innov Food Sci Emerg Technol 29:215–221

    Article  CAS  Google Scholar 

  • Martini S, Walsh MK (2012) Sensory characteristics and functionality of sonicated whey. Food Res Int 49:694–701

    Article  Google Scholar 

  • Martini S, Suzuki AH, Hartel RW (2008) Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85:621–628

    Article  CAS  Google Scholar 

  • Mawson R, Rout M, Swiergon P, Ripoll Munho G, Singh T, Knoerzer K, Juliano P (2014) Production of particulates from transducer erosion: implications on food safety. Ultrason Sonochem 21(6):2122–2130

    Article  PubMed  CAS  Google Scholar 

  • McCarthy N, Kelly P, Maher P, Fenelon M (2014) Dissolution of milk protein concentrate powders by ultrasonication. J Food Eng 126:142–148

    Article  CAS  Google Scholar 

  • Miles CA, Morley MJ, Hudson WR, Mackey BM (1995) Principles of separating micro-organisms from suspensions using ultrasound. J Appl Bacteriol 78:47–54

    Article  Google Scholar 

  • Mortazavi A, Tabatabai F (2008) Study of ice cream freezing process after treatment with ultrasound. World Appl Sci J 4(2):188–190

    Google Scholar 

  • Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R, Stevens G, Grieser F (2005a) The optimization of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason Sonochem 12:29–35

    Article  PubMed  CAS  Google Scholar 

  • Muthukumaran S, Kentish S, Ashokkumar M, Stevens G (2005b) Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J Membr Sci 258:106–114

    Article  CAS  Google Scholar 

  • Muthukumaran S, Kentish S, Stevens G, Ashokkumar M, Mawson G (2007) The application of ultrasound to dairy ultrafiltration: the influence of operation conditions. J Food Eng 81:364–373

    Article  Google Scholar 

  • Nejadmansouri M, Hosseni S, Niakosari M, Yousei G, Golmakani M (2016) Physico-chemical proeprties and storage stability of ultrasound mediated WPI stabilized fish oil nano emulsions. Food Hydrocolloids 61:801–811

    Article  CAS  Google Scholar 

  • Nguyen NH, Anema SG (2010) Effect of ultrasonication on the properties of skim milk used in the formation of acid gels. Innov Food Sci Emerg Technol

    Article  CAS  Google Scholar 

  • Nguyen NH, Anema SG (2017) Ultrasonication of reconstituted whole milk and its effect on acid gelation. Food Chem 217:593–601

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Lee Y, Zhou W (2012) Effect of high intensity ultrasound on carbohydratemetabolism of bifidobacteria in milk fermentation. Food Chem 130:866–874

    Article  CAS  Google Scholar 

  • Nii S, Kikumoto S, Tokuyama H (2009) Quantitative approach to ultrasonic emulsion separation. Ultrason Sonochem 16:145–149

    Article  PubMed  CAS  Google Scholar 

  • Nobel S, Ross N, Protte K, Korzendorfer A, Hitzmann B, Hinrichs J (2016) Microgel particle formation in yoghurt as influenced by sonication during fermentation. J Food Eng 180:29–38

    Article  CAS  Google Scholar 

  • Noci F, Walking-Ribeiro M, Cronin D, Morgan DJ, Lyng JG (2009) Effect of thermosonication, pulsed electric field and their combination on inactivation of L. innocua in milk. Int Dairy J 19:30–35

    Article  Google Scholar 

  • O’Sullivan J, Arellano M, Pichot R, Norton I (2014) The effect of ultrasound treatment on the structural, physical and emulsifying properties of dairy proteins. Food Hydrocolloids 42:386–396

    Article  CAS  Google Scholar 

  • O’Sullivan J, Murray B, Flynn C, Norton I (2015a) Comparison of batch and continuous ultrasonic emulsification processes. J Food Eng 167:114–121

    Article  CAS  Google Scholar 

  • O’Sullivan J, Beevers J, Park M, Greenwood R, Norton I (2015b) Comparative assesement of the effect of ultrasound treatment on protein functionality pre- and post emulsification. Colloids Surf, A 484:89–98

    Article  CAS  Google Scholar 

  • Ordóñoz JA, Aguilera MP, Garcia ML, Sanz B (1987) Effect of combined ultrasonic and heat treatment on the survival of a strain of Staphylococcus aureus. J Dairy Res 54:61–67

    Article  Google Scholar 

  • Pagán R, Mañas P, Alvarez I, Condón S (1999) Resistance of Listeria monocytogenesto ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microb 16(2):139–148

    Article  Google Scholar 

  • Prosonix (2012) Revolutionizing respiratory medicine (www.prosonix.co.uk). Website visited 20 December 2012.

  • Raso J, Palop A, Condon S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Micro 85:849–854

    Article  CAS  Google Scholar 

  • Riener J, Noci F, CroninDA Morgan DJ, Lyng G (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114:905–911

    Article  CAS  Google Scholar 

  • Riener J, Noci F, CroninDA Morgan DJ, Lyng G (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosoicated and conventially heated milks. Food Chem 119:1108–1110

    Article  CAS  Google Scholar 

  • Ross AIV, Griffiths MW, Mittal GS, Deeth HS (2003) Combining nonthermal technologies to control foodborne microorganisms. International J Food Microb 89(2–3):125–138

    Article  PubMed  Google Scholar 

  • Saffon M, Britten M, Pouliot Y (2011) Thermal aggregation of whey proteins in the presence of butter milk concentrate. J Food Eng 103:244–250

    Article  CAS  Google Scholar 

  • Sengul M, Erkaya T, Balsar M, Ertugay F (2011) Effect of photosonication treatment on inactivation of total and coliform bacteria in milk. Food Control 22:1803–1806

    Article  Google Scholar 

  • Sfakianakis P, Tzia C (2010) Yoghurt from ultrasound treated milk: monitoring of fermentation process and evaluation of product quality characteristics. Food Process Eng ICEF11 Proc 3:1649–1654

    Google Scholar 

  • Sfakianakis P, Topakas E, Tzia C (2015) Comparative study on high intensity ultrasound and pressure milk homogenization: effect on the kinetics of yoghurt fermentation process. Food Bioprocess Technol 8:548–557

    Article  CAS  Google Scholar 

  • Shamila-Syuhada A, Chuah L, Wan-Nadiah W, Cheng L, Alkarthi A, Effarizah M, Rusul G (2016) Inactivation of microbiota and selected spoilage and pathogenic bacteria in milk by combinations of ultrasound, hydrogen peroxide and active lactoseperoxidase system. Int Dairy J 61:120–125

    Article  CAS  Google Scholar 

  • Shanmugam A, Ashokkumar M (2014a) Ultrasonic preparation of stable flax seed oil emulsions in dairy systems—physicochemical characterization. Food Hydrocolloids 39:151–162

    Article  CAS  Google Scholar 

  • Shanmugam A, Ashokkumar M (2014b) Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrson Sonochem 21:1649–1657

    Article  CAS  Google Scholar 

  • Shanmugam A, Chandrapala J, Ashokkumar M (2012) The effect of ultrasound on the physical and functional properties of skim milk. Innov Food Sci Emerg Technol

    Article  CAS  Google Scholar 

  • Shen X, Fang T, Gao F, Guo M (2017) Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre and post thermal aggregation. Food Hydrocolloids 63:668–676

    Article  CAS  Google Scholar 

  • Sivakumar M, Senthilkumar P, Majumdar S, Pandit AB (2002) Ultrasound mediated alkaline hydrolysis of methyl benzoate reinvestigation with crucial parameters. Ultrason Sonochem 9:25–30

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM (2004) Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci 13:3017–3027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan M, Chin N, Yusof Y, Taip F, Abdullah J (2015) Characterisation of improved foam aeration and rheological properties of ultrasonically treated whey protein suspension. Int Dairy J 43:7–14

    Article  CAS  Google Scholar 

  • Vankova N, Tcholakova S, Denkov ND, Ivanov IB, Vulchev VD, Danner T (2007) Emulsification in turbulent flow—1. Mean and maximum drop diameter in inertial and viscous regimes. J Colloid Int Sci 312:363–380

    Article  CAS  Google Scholar 

  • Venugopal V (2008) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC Press, Boca Raton, pp 51–102

    Book  Google Scholar 

  • Vercet A, Oria P, Quina P, Crelier S, Lopez P (2002) Rheological properties of yoghurt made with milk submitted and manothermosonication. J Agric Food Chem 50:6165–6171

    Article  PubMed  CAS  Google Scholar 

  • Villamiel M, de Jong P (2000) Influence of high intensity ultrasound and heat treatment in continuous flow on fat, protein and native enzymes of milk. J Agric Food Chem 48:472–478

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Sakakibara M (1997) Lactose hydrolysis and B-galactosidase activity in sonicated fermentation with Lactobacillus strains. Ultrason Sonochem 4:255–261

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Kristbergsson K, Kjartansson GT (2011) Engineering food ingredients with high intensity ultrasound. In: Feng H, Barbosa-Cánovas G, Weiss J (eds) US technologies for food and bio processing. Springer, New York, pp 239–285

    Google Scholar 

  • Wu VC (2008) A review of microbial injury and recovery methods in food. Food Microb 25:735–744

    Article  CAS  Google Scholar 

  • Wu H, Hulbert J, Mont JR (2000) Effect of ultrasound on milk homogenization and fermentation with yoghurt starter. Innov Food Sci Emerg Technol 1:211–218

    Article  CAS  Google Scholar 

  • Wu H, Hulbert GJ, Mount JR (2001) Effects of ultrasound on milk homogenization and fermentation with yoghurt starter. Innov Food Sci Emerg Technol 1:211–218

    Article  Google Scholar 

  • Yanjun S, Jianhang C, Shiwen Z, Hongjuan L, Jing L, Lu L, Uluko H, Yanling S, Wenming C, Wupeng G, Jiaping L (2014) Effect of power ultrasound pretreatment on the physical and functional properties of reconstituted milk protein concentrate. J Food Eng 124:11–18

    Article  CAS  Google Scholar 

  • Ye A, Anema SG, Singh H (2004) High pressure induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk. J Dairy Sci 87:4013–4022

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhang S, Uluko H, Lu L, Xue H, Kong F, Lv J (2014). Effect of ultrasound pre-treatment on rennet-induced coagulation properties of goat’s milk. Food Chem 165:167–174

    Article  PubMed  CAS  Google Scholar 

  • Zisu B, Bhaskarcharya R, Ashokkumar M, Kentish S (2010) Ultrasonics processing of dairy systems in large scale reactors. Ultrason Sonochem 17:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Zisu B, Lee J, Chandrapala J, Bhaskarcharya R, Palmer M, Kentish S, Ashokkumar M (2011) Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J Dairy Res 78:226–232

    Article  PubMed  CAS  Google Scholar 

  • Zisu B, Schleyer, Chandrapala J (2012) Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int Dairy J 1–3

    Google Scholar 

  • Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer T (2014) Sonocrystallsiation of lactose in concentrated whey. Ultrason Sonochem 21(6):2117–2121

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayani Chandrapala .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandrapala, J., Zisu, B. (2018). Ultrasound Technology in Dairy Processing. In: Ultrasound Technology in Dairy Processing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-93482-2_1

Download citation

Publish with us

Policies and ethics