Skip to main content

Experimental Tests of the Landauer Principle in Electron Circuits, and Quasi-Adiabatic Computing Systems

  • Chapter
  • First Online:
Energy Limits in Computation

Abstract

Power dissipation is one of the most important factors limiting the development of integrated circuits. In this chapter, we will explore the limits of energy dissipation in computation with experiments and circuit designs. Our experiments show that there is no fundamental limit on energy that must be dissipated to perform computation as long as information is preserved, in agreement with the Landauer principle. The erasure of information leads to a loss of bit energy with an ultimate lower limit of kB T ln2, sometimes incorrectly referred to as the “Landauer limit for energy dissipation in computation.” We present an experiment where a dissipation of 0.005 kB T which is far below the limit of kB T ln2 occurs in reversible adiabatic bit manipulation, and experimentally demonstrate that dissipation of the full bit energy occurs if information is erased. To exploit the advantages of quasi-adiabatic reversible computation, we discuss adiabatic logic systems, and present the design of a microprocessor based upon adiabatic logic. Due to their inherent leakage current, field-effect transistors have limitations in adiabatic implementations. We discuss possible devices that have a better match to adiabatic systems. Finally, we present experiments making direct measurement of the heat generated in logical operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The above estimate gives a probability of the bit value randomly acquiring an incorrect value due to thermal fluctuations of voltage across the capacitor and it assumes an ideal noiseless readout circuit.

  2. 2.

    The parameter τ also defines the response time for the acquisition system to be able to capture the power dissipation process in the ERASE WITHOUT A COPY experiment that corresponds to a discharge of the capacitor C through resistor R.

  3. 3.

    This formula takes into account the “brickwall” bandwidth of an RC circuit, \( B=\frac{\pi }{2}\frac{1}{2\pi RC} \).

  4. 4.

    The noise contributions of the second and third stage in the amplifier are negligibly small due to high gain (79.3) of the first stage amplifier.

  5. 5.

    At this acquisition rate, we can capture the highest frequency components of the spectrum, 22 kHz.

  6. 6.

    Once again, trace averaging is used to improve the SNR since much larger bandwidth and large current NSD of AD811 results in VN ∼ 100 μV. Note that it takes only 100 ms to average 105 traces and effectively reduce the noise to 0.3 μV.

  7. 7.

    In both cases the signal from the TFTC is first amplified with a differential transimpedance amplifier (DTA).

References

  1. R.K. Cavin, V.V. Zhirnov, J.A. Hutchby, G.I. Bourianoff, Energy barriers, demons, and minimum energy operation of electronic devices. Fluct. Noise Lett. 5, C29–C38 (2005)

    Article  Google Scholar 

  2. D.J. Costello, G.D. Forney, Channel coding: the road to channel capacity. Proc. IEEE 95, 1150–1177 (2007)

    Article  Google Scholar 

  3. W. Porod, R.O. Grondin, D.K. Ferry, G. Porod, Dissipation in computation. Phys. Rev. Lett. 52, 232–235 (1984)

    Article  Google Scholar 

  4. J.D. Norton, Waiting for Landauer. Stud. Hist. Philos. Mod. Phys. 42, 184–198 (2011)

    Article  MathSciNet  Google Scholar 

  5. P.M. Solomon, D.J. Frank, Power Measurements of Adiabatic Circuits by Thermoelectric Technique, in International Symposium on Low Power Design, (ACM, San Jose, 1995), pp. 18–19

    Google Scholar 

  6. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  7. A.O. Orlov, C.S. Lent, C.C. Thorpe, G.P. Boechler, G.L. Snider, Experimental test of Landauer’s principle at the sub-kBT level. Jpn. J. Appl. Phys. 51, 06FE10 (2012)

    Article  Google Scholar 

  8. H. Lu, A. Seabaugh, Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices 2, 44–49 (2014)

    Article  Google Scholar 

  9. D. Patterson, The trouble with multicore. IEEE Spectr. 47, 28–32 (2010)

    Article  Google Scholar 

  10. H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, D. Burger, Dark Silicon and the End of Multicore Scaling, in 38th Annual International Symposium on Computer Architecture, (ACM, San Jose, 2011), pp. 365–376

    Google Scholar 

  11. J. Henkel, H. Khdr, S. Pagani, M. Shafique, New Trends in Dark Silicon, in Proceedings of the 52nd Annual Design Automation Conference, (ACM, New York, 2015)

    Google Scholar 

  12. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  13. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  14. B. Lambson, J. Bokor, Temperature Dependence of Heat Dissipation During Landauer Erasure of Nanomagnets, in IEEE-NANO, 2012, 12th IEEE Conference on Nanotechnology, (IEEE, Birmingham, 2012), pp. 1–3

    Google Scholar 

  15. L.B. Kish, Thermal (noise) death of Moore’s law? AIP Conf. Proc. 665, 469–476 (2003)

    Article  Google Scholar 

  16. P.J.B. Koeck, Quantization errors in averaged digitized data. Signal Process. 81, 345–356 (2001)

    Article  Google Scholar 

  17. K. Roy, S. Bandyopadhyay, J. Atulasimha, Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99, 063108 (2011)

    Article  Google Scholar 

  18. K. Galatsis, A. Khitun, R. Ostroumov, K.L. Wang, W.R. Dichtel, E. Plummer, J.F. Stoddart, J.I. Zink, J.Y. Lee, Y.-H. Xie, K.W. Kim, Alternate state variables for emerging nanoelectronic devices. IEEE Trans. Nanotechnol. 8, 66–75 (2009)

    Article  Google Scholar 

  19. M.S. Fashami, K. Roy, J. Atulasimha, S. Bandyopadhyay, Magnetization dynamics, Bennett clocking and associated energy dissipation in multiferroic logic. Nanotechnology 22, 155201 (2011)

    Article  Google Scholar 

  20. S. Bandyopadhyay, M. Cahay, Electron spin for classical information processing: A brief survey of spin-based logic devices, gates and circuits. Nanotechnology 20, 412001 (2009)

    Article  Google Scholar 

  21. V.V. Zhirnov, R.K. Cavin, J.A. Hutchby, G.I. Bourianoff, Limits to binary logic switch scaling - a Gedanken model. Proc. IEEE 91, 1934–1939 (2003)

    Article  Google Scholar 

  22. S. Salahuddin, S. Datta, Interacting systems for self-correcting low power switching. Appl. Phys. Lett. 90, 093503–093503 (2007)

    Article  Google Scholar 

  23. R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, D.M. Tricker, Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999)

    Article  Google Scholar 

  24. H.G. Gauch, Scientific Method in Practice (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  25. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  Google Scholar 

  26. T. Toffoli, Reversible Computing. Tech. Memo MIT/LCS/TM-151 (MIT Labaratory for Computer Science, Cambridge, 1980)

    Google Scholar 

  27. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible logic gate using adiabatic superconducting devices. Sci. Rep. 4, 6354 (2014)

    Article  Google Scholar 

  28. N. Takeuchi, Y. Yamanashi, N. Yoshikawa, Reversible computing using adiabatic superconductor logic. Lect. Notes Comput. Sci. 8507, 15–25 (2014)

    Article  MathSciNet  Google Scholar 

  29. S. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  30. M.W.R. Dreslinski, D. Blaauw, D. Sylvester, T. Mudge, Near-threshold computing: Reclaiming Moore’s law through energy efficient integrated circuits. Proc. IEEE 98, 253–266 (2010)

    Article  Google Scholar 

  31. D. Markovic, C.C. Wang, L.P. Alarcon, T.T. Liu, J.M. Rabaey, Ultralow-power design in near-threshold region. Proc. IEEE 98, 237–252 (2010)

    Article  Google Scholar 

  32. H. Soeleman, K. Roy, B. Paul, Robust Ultra-low Power Sub-threshold DTMOS Logic, in Islped ’00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design, (IEEE, New York, 2000), pp. 25–30

    Google Scholar 

  33. S. Fisher, A. Teman, D. Vaysman, A. Gertsman, O. Yadid-Pecht, Ultra-low Power Subthreshold Flip-flop Design, in Iscas: 2009 IEEE International Symposium on Circuits and Systems, vol. 1-5, (IEEE, New York, 2009), pp. 1573–1576

    Chapter  Google Scholar 

  34. S. Fisher, A. Teman, D. Vaysman, A. Gertsman, O. Yadid-Pecht, A. Fish, Digital Subthreshold Logic Design - Motivation and Challenges, in 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, (IEEE, New York, 2008), pp. 682–686

    Google Scholar 

  35. V.I. Starosel'skii, Adiabatic logic circuits: A review. Russ. Microelectron. 31, 37–58 (2001)

    Article  Google Scholar 

  36. A. Mishra, N. Singh, Low power circuit design using positive feedback adiabatic logic (PFAL). Int. J. Sci. Res. 3(6), 02014110 (2014)

    Google Scholar 

  37. S. Houri, G. Billiot, M. Belleville, A. Valentian, H. Fanet, Limits of CMOS technology and interest of NEMS relays for adiabatic logic applications. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 1546–1554 (2015)

    Article  MathSciNet  Google Scholar 

  38. S. Younis, Asymptotically Zero Energy Computing Using Split-level Charge Recovery Logic. Doctoral Dissertation, Massachusets Institute of Technology, 1994

    Google Scholar 

  39. N. Weste, D. Harris, CMOS VLSI Design: A Circuits and Systems Perspectives, 4th edn. (Addison-Wesley, Boston, 2010)

    Google Scholar 

  40. C. Pawashe, K. Lin, K.J. Kuhn, Scaling limits of electrostatic nanorelays. IEEE Trans. Electron Devices 60, 2936–2942 (2013)

    Article  Google Scholar 

  41. A. Peschot, C. Qian, T.J.K. Liu, Nanoelectromechanical switches for low-power digital computing. Micromachines 6, 1046–1065 (2015)

    Article  Google Scholar 

  42. H.F.G. Pillonnet, S. Houri, Adiabatic Capacitive Logic: A Paradigm for Low-power Logic, in IEEE International Symposium on Circuits and Systems, (IEEE, Baltimore, 2017)

    Google Scholar 

  43. R.K. Kummamuru, J. Timler, G. Toth, C.S. Lent, R. Ramasubramaniam, A.O. Orlov, G.H. Bernstein, G.L. Snider, Power gain in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)

    Article  Google Scholar 

  44. M.A. Ratner, Intra-molecular electron-transfer - some thoughts and possible applications. Abstr. Pap. Am. Chem. Soc. 174, 81–81 (1977)

    Google Scholar 

  45. M. Ratner, Molecular electronics - pushing electrons around. Nature 404, 137–138 (2000)

    Article  Google Scholar 

  46. C.A. Mirkin, M.A. Ratner, Molecular electronics. Annu. Rev. Phys. Chem. 43, 719–754 (1992)

    Article  Google Scholar 

  47. M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8, 378–381 (2013)

    Article  Google Scholar 

  48. J.P. Bergfield, M.A. Ratner, Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Status Solidi B 250, 2249–2266 (2013)

    Article  Google Scholar 

  49. M.A. Reed, Molecular electronics - back under control. Nat. Mater. 3, 286–287 (2004)

    Article  Google Scholar 

  50. M.A. Reed, Prospects for molecular-scale electronics. MRS Bull. 26, 113–120 (2001)

    Article  Google Scholar 

  51. M.A. Reed, Molecular-scale electronics. Proc. IEEE 87, 652–658 (1999)

    Article  Google Scholar 

  52. J.M. Tour, W.A. Reinerth, L. Jones, T.P. Burgin, C.W. Zhou, C.J. Muller, M.R. Deshpande, M.A. Reed, Recent advances in molecular scale electronics. Ann. N. Y. Acad. Sci. 852, 197–204 (1998)

    Article  Google Scholar 

  53. K. Sotthewes, V. Geskin, R. Heimbuch, A. Kumar, H.J.W. Zandvliet, Molecular electronics: the single-molecule switch and transistor. APL Mater. 2, 010701 (2014)

    Article  Google Scholar 

  54. C.S. Lent, P.D. Tougaw, Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74, 6227–6233 (1993)

    Article  Google Scholar 

  55. C.S. Lent, P.D. Tougaw, Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)

    Article  Google Scholar 

  56. C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  57. I. Amlani, A.O. Orlov, G.L. Snider, G.H. Bernstein, Differential charge detection for quantum-dot cellular automata. J. Vac. Sci. Technol. B 15, 2832–2835 (1997)

    Article  Google Scholar 

  58. I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  Google Scholar 

  59. A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)

    Article  Google Scholar 

  60. A.O. Orlov, I. Amlani, R.K. Kummamuru, R. Ramasubramaniam, G. Toth, C.S. Lent, G.H. Bernstein, G.L. Snider, Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata. Appl. Phys. Lett. 77, 295–297 (2000)

    Article  Google Scholar 

  61. C.S. Lent, Molecular electronics – bypassing the transistor paradigm. Science 288, 1597 (2000)

    Article  Google Scholar 

  62. C.S. Lent, B. Isaksen, M. Lieberman, Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  63. C.S. Lent, M. Liu, Y.H. Lu, Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17, 4240–4251 (2006)

    Article  Google Scholar 

  64. M.T. Niemier, P.M. Kogge, QCA Circuits, in Proceedings of the Ninth Great Lakes Syposium on VLSI, (IEEE, New York, 1999), pp. 118–121

    Chapter  Google Scholar 

  65. M. Mitic, M.C. Cassidy, K.D. Petersson, R.P. Starrett, E. Gauja, R. Brenner, R.G. Clark, A.S. Dzurak, C. Yang, D.N. Jamieson, Demonstration of a silicon-based quantum cellular automata cell. Appl. Phys. Lett. 89, 0135503 (2006)

    Article  Google Scholar 

  66. R.P. Cowburn, M.E. Welland, Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  Google Scholar 

  67. M.B. Haider, J.L. Pitters, G.A. DiLabio, L. Livadaru, J.Y. Mutus, R.A. Wolkow, Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

    Article  Google Scholar 

  68. R.D. Brown, J.M. Coman, J.A. Christie, R.P. Forrest, C.S. Lent, S.A. Corcelli, K.W. Henderson, S.A. Kandel, Evolution of metastable clusters into ordered structures for 1,1 '-Ferrocenedicarboxylic acid on the Au(111) surface. J. Phys. Chem. C 121, 6191–6198 (2017)

    Article  Google Scholar 

  69. C.S. Lent, K.W. Henderson, S.A. Kandel, S.A. Corcelli, G.L. Snider, A.O. Orlov, P.M. Kogge, M.T. Niemier, R.C. Brown, J.A. Christie, N.A. Wasio, R.C. Quardokus, R.P. Forrest, J.P. Peterson, A. Silski, D.A. Turner, E.P. Blair, Y.H. Lu, Molecular Cellular Networks: a Non von Neumann Architecture for Molecular Electronics, in 2016 IEEE International Conference on Rebooting Computing (ICRC), (IEEE, New York, 2016)

    Google Scholar 

  70. J.A. Christie, R.P. Forrest, S.A. Corcelli, N.A. Wasio, R.C. Quardokus, R. Brown, S.A. Kandel, Y.H. Lu, C.S. Lent, K.W. Henderson, Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications. Angew. Chem. Int. Ed. Engl. 54, 15448–15451 (2015)

    Article  Google Scholar 

  71. N.A. Wasio, R.C. Quardokus, R.D. Brown, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, S.A. Kandel, Cyclic hydrogen bonding in indole carboxylic acid clusters. J. Phys. Chem. C 119, 21011–21017 (2015)

    Article  Google Scholar 

  72. J. Christie, R. Forrest, S. Corcelli, N. Wasio, R. Quardokus, S. Kandel, Y.H. Lu, C. Lent, A. Oliver, K. Henderson, Molecular Switches: Exploring the Counter-ion Problem, in Abstracts of Papers of the American Chemical Society, vol. 249, (American Chemical Society, Washington, D.C., 2015)

    Google Scholar 

  73. R.C. Quardokus, N.A. Wasio, R.D. Brown, J.A. Christie, K.W. Henderson, R.P. Forrest, C.S. Lent, S.A. Corcelli, S.A. Kandel, Hydrogen-bonded clusters of 1,1′-ferrocenedicarboxylic acid on Au(111) are initially formed in solution. J. Chem. Phys. 142, 101927 (2015)

    Article  Google Scholar 

  74. R.C. Quardokus, N.A. Wasio, J.A. Christie, K.W. Henderson, R.P. Forrest, C.S. Lent, S.A. Corcelli, S.A. Kandel, Hydrogen-bonded clusters of ferrocenecarboxylic acid on Au(111). Chem. Commun. 50, 10229–10232 (2014)

    Article  Google Scholar 

  75. R.C. Quardokus, N.A. Wasio, R.P. Forrest, C.S. Lent, S.A. Corcelli, J.A. Christie, K.W. Henderson, S.A. Kandel, Adsorption of diferrocenylacetylene on Au(111) studied by scanning tunneling microscopy. Phys. Chem. Chem. Phys. 15, 6973–6981 (2013)

    Article  Google Scholar 

  76. H. Qi, S. Sharma, Z. Li, G.L. Snider, A.O. Orlov, C.S. Lent, T.P. Fehlner, Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125, 15250–15259 (2003)

    Article  Google Scholar 

  77. H. Qi, A. Gupta, B.C. Noll, G.L. Snider, Y. Lu, C. Lent, T.P. Fehlner, Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. J. Am. Chem. Soc. 127, 15218–15227 (2005)

    Article  Google Scholar 

  78. G. Szakmany, A. Orlov, G. Bernstein, W. Porod, Single-metal nanoscale thermocouples. IEEE Trans. Nanotechnol. 13, 1234 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a, and the National Science Foundation under Grants ECCS09-01659, ECCS09-01659, DGE-1313583, and ECCS-1509087. The authors are also grateful to Amy L. Snider for assistance in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlov, A.O. et al. (2019). Experimental Tests of the Landauer Principle in Electron Circuits, and Quasi-Adiabatic Computing Systems. In: Lent, C., Orlov, A., Porod, W., Snider, G. (eds) Energy Limits in Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-93458-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93458-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93457-0

  • Online ISBN: 978-3-319-93458-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics