Skip to main content

Management of QT Prolongation Induced by Anticancer Drugs

  • Chapter
  • First Online:
Cardiovascular Complications in Cancer Therapy

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Recent advances in the field of cancer therapy have significantly improved the prognosis of oncologic patients; however, side effects associated with antineoplastic treatment remain the main cause of the high mortality of cancer survivors. The most serious adverse effect of anticancer therapy is cardiovascular toxicity, i.e. QT prolongation, arrhythmias, myocardial ischemia, stroke, hypertension, thromboembolism, left ventricular dysfunction, and heart failure, which can occur even in patients undergoing targeted therapy. In cases of QT prolongation, which is favoured by electrolyte abnormalities, low levels of serum potassium and antineoplastic drugs, suspension of the antineoplastic treatment and correction of the electrolyte abnormalities (hypokalaemia, hypomagnesaemia, hypocalcaemia) can help to restore normal conditions. Thereafter, the patient’s cardiac functions should be monitored. QT prolongation can also cause potentially fatal cardiac arrhythmias and is treated with intravenous magnesium sulphate after electrical cardioversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25:3362–71.

    Article  CAS  Google Scholar 

  2. Taran LM, Szilagyi N. The duration of the electrical systole (Q-T) in acute rheumatic carditis in children. Am Heart J. 1947;33:14–26.

    Article  CAS  Google Scholar 

  3. Fridericia LS. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. 1920. Ann Noninvasive Electrocardiol. 2003;8:343–51.

    Article  CAS  Google Scholar 

  4. Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70:797–801.

    Article  CAS  Google Scholar 

  5. Desai M, Li L, Desta Z, Malik M, Flockhart D. Variability of heart rate correction methods for the QT interval. Br J Clin Pharmacol. 2003;55:511–7.

    Article  CAS  Google Scholar 

  6. Guidance for Industry: E14 Clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Available at: https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073153.pdf.

  7. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v 4.03. Available at: https://nciterms.nci.nih.gov/ncitbrowser/pages/vocabulary.jsf?dictionary=CTCAE&version=4.03

  8. Li EC, Esterly JS, Pohl S, Scott SD, McBride BF. Drug-induced QT-interval prolongation: considerations for clinicians. Pharmacotherapy. 2010;30:684–701.

    Article  CAS  Google Scholar 

  9. Yeh ET. Onco-cardiology: the time has come. Tex Heart Inst J. 2011;38(3):246–7.

    PubMed  PubMed Central  Google Scholar 

  10. Coppola C, Rienzo A, Piscopo G, Barbieri A, Arra C, Maurea N. Management of QT prolongation induced by anti-cancer drugs: Target therapy and old agents. Different algorithms for different drugs. Cancer Treat Rev. 2018;63:9.

    Article  Google Scholar 

  11. CredibleMeds. [website] QT drugs list. Available at https://crediblemeds.org.

  12. Maurea N, Spallarossa P, Cadeddu C, Madonna R, Mele D, Monte I, et al. A recommended practical approach to the management of target therapy and angiogenesis inhibitors cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology. J Cardiovasc Med (Hagerstown). 2016;17 Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection:e93–104.

    Article  Google Scholar 

  13. Hasinoff BB. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol Appl Pharmacol. 2010;244:190–5.

    Article  CAS  Google Scholar 

  14. Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36:295–316.

    Article  CAS  Google Scholar 

  15. US FDA drug approval summary for vandetanib in medullary thyroid cancer. Available online at: https://www.accessdata.fda.gov/scripts/cder/daf/.

  16. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS One. 2012;7:e30353.

    Article  CAS  Google Scholar 

  17. FDA approved manufacter’s package insert for vantetanib. Available online at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=4dc7f0af-77fb-4eec-46b9-dd1c2dcb4525.

  18. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60:222–43.

    Article  Google Scholar 

  19. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15:4220–7.

    Article  CAS  Google Scholar 

  20. Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28:475–80.

    Article  CAS  Google Scholar 

  21. Heath EI, Infante J, Lewis LD, Luu T, Stephenson J, Tan AR, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of repeated oral doses of pazopanib on cardiac conduction in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71:565–73.

    Article  CAS  Google Scholar 

  22. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  CAS  Google Scholar 

  23. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.

    Article  Google Scholar 

  24. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    Article  CAS  Google Scholar 

  25. Girardi F, Franceschi E, Brandes AA. Cardiovascular safety of VEGF-targeting therapies: current evidence and handling strategies. Oncologist. 2010;15:683–94.

    Article  CAS  Google Scholar 

  26. Lenihan DJ, Kowey PR. Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist. 2013;18(8):900–8.

    Article  CAS  Google Scholar 

  27. Bello CL, Mulay M, Huang X, Patyna S, Dinolfo M, Levine S, et al. Electrocardiographic characterization of the QTc interval in patients with advanced solid tumors: pharmacokinetic- pharmacodynamic evaluation of sunitinib. Clin Cancer Res. 2009;15:7045–52.

    Article  CAS  Google Scholar 

  28. Hutson TE, Figlin RA, Kuhn JG, Motzer RJ. Targeted therapies for metastatic renal cell carcinoma: an overview of toxicity and dosing strategies. Oncologist. 2008;13:1084–96.

    Article  CAS  Google Scholar 

  29. Tolcher AW, Appleman LJ, Shapiro GI, Mita AC, Cihon F, Mazzu A, et al. A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer. Cancer Chemother Pharmacol. 2011;67:751–64.

    Article  CAS  Google Scholar 

  30. AIFA. Agenzia Italiana del Farmaco. Available at: http://www.agenziafarmaco.gov.it

  31. Lee HA, Kim EJ, Hyun SA, Park SG, Kim KS. Electrophysiological effects of the anti-cancer drug lapatinib on cardiac repolarization. Basic Clin Pharmacol Toxicol. 2010;107:614–8.

    Article  CAS  Google Scholar 

  32. Sprycel (dasatinib) prescribing information. Princeton: Bristol-Myers Squibb Company. 2006.

    Google Scholar 

  33. DailyMed. [website]. FDA guidances and drug list. Available at: https://dailymed.nlm.nih.gov/dailymed/index.cfm

  34. Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13:2318–22.

    Article  CAS  Google Scholar 

  35. Woo S, Gardner ER, Chen X, Ockers SB, Baum CE, Sissung TM, et al. Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009;15:1496–503.

    Article  CAS  Google Scholar 

  36. Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–73.

    Article  CAS  Google Scholar 

  37. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.

    Article  CAS  Google Scholar 

  38. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12:3997–4003.

    Article  CAS  Google Scholar 

  39. Bailey H, Stenehjem DD, Sharma S. Panobinostat for the treatment of multiple myeloma: the evidence to date. J Blood Med. 2015;6:269–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Doyle AC. Notes of a case of leukocythaemia. Lancet. 1882;119:490.

    Article  Google Scholar 

  41. Goldsmith S, From AH. Arsenic-induced atypical ventricular tachycardia. N Engl J Med. 1980;303:1096–8.

    Article  CAS  Google Scholar 

  42. Little RE, Kay GN, Cavender JB, Epstein AE, Plumb VJ. Torsade de pointes and T-U wave alternans associated with arsenic poisoning. Pacing Clin Electrophysiol. 1990;13:164–70.

    Article  CAS  Google Scholar 

  43. St Petery J, Gross C, Victorica BE. Ventricular fibrillation caused by arsenic poisoning. Am J Dis Child. 1970;120:367–71.

    CAS  PubMed  Google Scholar 

  44. Weinberg SL. The electrocardiogram in acute arsenic poisoning. Am Heart J. 1960;60:971–5.

    Article  CAS  Google Scholar 

  45. Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21:3609–15.

    Article  CAS  Google Scholar 

  46. Drolet B, Simard C, Roden DM. Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation. 2004;109:26–9.

    Article  CAS  Google Scholar 

  47. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  Google Scholar 

  48. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.

    Article  CAS  Google Scholar 

  49. Wei H, Du F, Lu Y, Wei J, Dong X. Successful ceritinib treatment in a man with MPE and an ALK fusion gene mutation after multiple treatments. Springerplus. 2016;5(1):2083.

    Article  Google Scholar 

  50. Ou SH, Tong WP, Azada M, Siwak-Tapp C, Dy J, Stiber JA. Heart rate decrease during crizotinib treatment and potential correlation to clinical response. Cancer. 2013;119:1969–75.

    Article  CAS  Google Scholar 

  51. van Noord C, Eijgelsheim M, Stricker BH. Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol. 2010;70(1):16–23.

    Article  Google Scholar 

  52. Diemberger I, Massaro G, Cubelli M, Rubino D, Quercia S, Martignani C, et al. Repolarization effects of multiple-cycle chemotherapy and predictors of QTc prolongation: a prospective female cohort study on >2000 ECGs. Eur J Clin Pharmacol. 2015;71(8):1001–9.

    Article  CAS  Google Scholar 

  53. Cuni R, Parrini I, Asteggiano R, Conte MR. Targeted cancer therapies and QT interval prolongation: unveiling the mechanisms underlying arrhythmic complications and the need for risk stratification strategies. Clin Drug Investig. 2017;37(2):121–34.

    Article  CAS  Google Scholar 

  54. Chalmers AJ. The potential role and application of ParP inhibitors in cancer treatment. Br Med Bull. 2009;89:23–40.

    Article  CAS  Google Scholar 

  55. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.

    Article  CAS  Google Scholar 

  56. Dockery LE, Gunderson CC, Moore KN. Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther. 2017;10:3029–37.

    Article  CAS  Google Scholar 

  57. Balasubramaniam S, Beaver JA, Horton S, Fernandes LL, Tang S, Horne HN, et al. FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian cancer. Clin Cancer Res. 2017;23(23):7165–70.

    Article  CAS  Google Scholar 

  58. Caruso D, Papa A, Tomao S, Vici P, Panici PB, Tomao F. Niraparib in ovarian cancer: results to date and clinical potential. Ther Adv Med Oncol. 2017;9(9):579–88.

    Article  CAS  Google Scholar 

  59. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64.

    Article  CAS  Google Scholar 

  60. Munasinghe W, Stodtmann S, Tolcher A, Calvo E, Gordon M, Jalving M, et al. Effect of veliparib (ABT-888) on cardiac repolarization in patients with advanced solid tumors: a randomized, placebo-controlled crossover study. Cancer Chemother Pharmacol. 2016;78(5):1003–11.

    Article  CAS  Google Scholar 

  61. Plummer R, Stephens P, Aissat-Daudigny L, Cambois A, Moachon G, Brown PD, et al. Phase 1 dose-escalation study of the PARP inhibitor CEP-9722 as monotherapy or in combination with temozolomide in patients with solid tumors. Cancer Chemother Pharmacol. 2014;74(2):257–65.

    Article  CAS  Google Scholar 

  62. Swaisland H, Plummer R, So K, Garnett S, Bannister W, Fabre MA, et al. Olaparib does not cause clinically relevant QT/QTc interval prolongation in patients with advanced solid tumours: results from two phase I studies. Cancer Chemother Pharmacol. 2016;78(4):775–84.

    Article  CAS  Google Scholar 

  63. Doi T, Hewes B, Kakizume T, Tajima T, Ishikawa N, Yamada Y. Phase 1 study of single-agent ribociclib in Japanese patients with advanced solid tumors. Cancer Sci. 2018;109(1):193–8.

    Article  CAS  Google Scholar 

  64. Sonke GS, Hart LL, Campone M, Erdkamp F, Janni W, Verma S, et al. Ribociclib with letrozole vs letrozole alone in elderly patients with hormone receptor-positive, HER2-negative breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Res Treat. 2018;167(3):659–69. https://doi.org/10.1007/s10549-017-4523-y.

    Article  CAS  PubMed  Google Scholar 

  65. Therapy Management Guide-Kisqali (Ribociclib). NOVARTIS. 2017.

    Google Scholar 

  66. FDA Approves Palbociclib for Metastatic Breast Cancer. OncLive. 3 Feb 2015.

    Google Scholar 

  67. Pfizer Receives U.S. FDA Accelerated Approval of IBRANCE (palbociclib). Pfizer. 3 Feb 2015.

    Google Scholar 

  68. Spring LM, Zangardi ML, Moy B, Bardia A. Clinical management of potential toxicities and drug interactions related to cyclin-dependent kinase 4/6 inhibitors in breast cancer: practical considerations and recommendations. Oncologist. 2017;22(9):1039–48.

    Article  CAS  Google Scholar 

  69. Kim ES, Scott LJ. Palbociclib: a review in HR-positive, HER2-negative, advanced or metastatic breast cancer. Target Oncol. 2017;12(3):373–83.

    Article  Google Scholar 

  70. Barroso-Sousa R, Shapiro GI, Tolaney SM. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care (Basel). 2016;11(3):167–73.

    Article  Google Scholar 

  71. Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(17):5218–24.

    Article  CAS  Google Scholar 

  72. Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Jean Ann Gilder (Scientific Communication srl., Naples, Italy) for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maurea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurea, N., Paciello, R., Coppola, C., Farmakis, D. (2019). Management of QT Prolongation Induced by Anticancer Drugs. In: Russo, A., Novo, G., Lancellotti, P., Giordano, A., Pinto, F. (eds) Cardiovascular Complications in Cancer Therapy. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-93402-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93402-0_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-93401-3

  • Online ISBN: 978-3-319-93402-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics