Skip to main content

Advanced Genomics and Breeding Tools to Accelerate the Development of Climate Resilient Wheat

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Cereal Crops

Abstract

Knowledge-based breeding to develop high-yielding wheat cultivars is the key to keep pace with increasing food demand, not only in optimal but also in stressed conditions. Resilience to climate extremes and variability has become one of the most important crop breeding targets. Genomics will play an important role to uncover the basis of adaptability to heat, drought, salinity and other abiotic stresses, and disease resistances in wheat. Deeper understanding of the physiological and genetic bases of drought and heat resistance is crucial for maintaining and improving breeding program efficiency. The high-quality wheat reference genome sequence is recently decoded and new genotyping tools are being developed based on the most updated genomics information to be used in practical breeding programs. In this chapter, we focused on the (i) quantitative trait loci (QTLs) analysis related to drought, heat, salinity tolerance, and diseases resistance in wheat, (ii) functional genes discovered for important breeding traits and development of markers for use in breeding, (iii) role of wheat genetic resources to enhance the genetic diversity and expansion of alleles for important genes, (iv) improved genotyping and phenotyping approaches to understand the genetic basis of wheat production traits, and (iv) future strategies to accelerate the rate of genetic gain in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098

    Article  PubMed  Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Acuna-Galindo MA, Mason RE, Subrahmanyam NK, Hays D (2014) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  • Afzal F, Li H, Gul A, Subhani A, Ali A, Mujeeb-Kazi A, Ogbonnaya F, Trethowan R, Xia X, He Z, Rasheed A (2019) Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3: Genes, Genomes, Genetics 9:1957

    Google Scholar 

  • Ahmad I, Khaliq I, Mahmood N, Khan N, Secretariat EF (2015) Morphological and physiological criteria for drought tolerance at seedling stage in wheat. J Anim Plant Sci 25:1041–1048

    CAS  Google Scholar 

  • Ahmadi G, Akbarabadi A, Kahrizi D, Rezaizad A, Gheytouli M (2012) Study of drought tolerance of bread wheat (Triticum aestivum L.) genotypes in seedling stage. Biharean Biologist 6:77–80

    Google Scholar 

  • Ain Q-U, Rasheed A, Anwar A, Mahmood T, Mahmood T, Imtiaz M, He Z, Xia X, Quraishi U (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6

    Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akram M (2011) Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agri Res 36:455–468

    Article  Google Scholar 

  • Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley AR, Alda M, Jack P, Phillips AL, Edwards KJ (2017) Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15:390–401

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Serret MD, Lopes MS (2019) Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? J Exp Bot 70:1419–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ArausJL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Google Scholar 

  • Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, Asyraf Md Hatta M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo LJ, Poland J, Bariana H, Jones JDG, Bentley AR, Ayliffe M, Olson E, Xu SS, Steffenson BJ, Lagudah E, Wulff BBH (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotechnol 37:139–143

    Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Atkinson JA, Jackson RJ, Bentley AR, Ober E, Wells DM (2018) Field phenotyping for the future. In: Roberts JA (ed) Annual Plant Reviews online. Wiley

    Google Scholar 

  • Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120

    Article  CAS  Google Scholar 

  • Bai G, Su Z, Cai J (2018) Wheat resistance to Fusarium head blight. Can J Plant Path 40:336–346

    Article  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ, Ciftci V, L ESdM, Aasim M, Nadeem MA, Aktas H, Ozkan H, Hatipoglu R (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12:e0167821

    Google Scholar 

  • Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F et al (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30:511–522

    Article  Google Scholar 

  • Barber HM, Lukac M, Simmonds J, Semenov MA, Gooding MJ (2017) Temporally and genetically discrete periods of wheat sensitivity to high temperature. Front Plant Sci 8

    Google Scholar 

  • Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G (2014) Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens 6:10395–10412

    Article  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bettgenhaeuser J, Krattinger SG (2019) Rapid gene cloning in cereals. Theor Appl Genet 132:699–711

    Article  PubMed  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Nat Acad Sci USA106:9519–9524

    Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plant 14016

    Google Scholar 

  • Borner A, Roder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticumaestivum L.). Theor Appl Genet 95:1133–1137

    Article  CAS  Google Scholar 

  • Börner A, Ogbonnaya FC, Röder MS, Rasheed A, Periyannan S, Lagudah ES (2015) Aegilops tauschii introgressions in wheat. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien Introgression in Wheat. Springer International, Switzerland

    Google Scholar 

  • Bovill WD, Hyles J, Zwart AB, Ford BA, Perera G, Phongkham T, Brooks BJ, Rebetzke GJ, Hayden MJ, Hunt JR, Spielmeyer W (2019) Increase in coleoptile length and establishment by Lcol-A1, a genetic locus with major effect in wheat. BMC Plant Biol 19:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun HJ, Rajaram S, Ginkel MV (1996) CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175–183

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M, Gilliham M (2014) The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80:516–526. Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422

    Google Scholar 

  • Callaway E (2016) Devastating wheat fungus appears in Asia for first time. Nature 532:421–422

    Article  PubMed  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao SM, Wang SC, Huang BE et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  PubMed  PubMed Central  Google Scholar 

  • Chartres CJ, Noble A (2015) Sustainable intensification: overcoming land and water constraints on food production. Food Secur 7:235–245

    Article  Google Scholar 

  • Chen X (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Amme J Plant Sci 4:608–627

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Chen X, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46

    Article  PubMed  Google Scholar 

  • Chen S, Huang Z, Dai Y, Qin S, Gao Y, Zhang L, Gao Y, Chen J (2013) The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS ONE 8:e65122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U (2017) Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol Breed 37:21

    Article  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Coppens F, Wuyts N, Inzé D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr Opin Syst Biol 4:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Cormier F, Throude M, Ravel C, Gouis J, Leveugle M, Lafarge S, Exbrayat F, Duranton N, Praud S (2015) Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide core collection and european elite germplasm. Agronomy 5:143

    Article  CAS  Google Scholar 

  • Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CAB International, Oxfordshire, UK, pp 84–119

    Chapter  Google Scholar 

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222

    Article  Google Scholar 

  • Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandes JM, Bockus WW, Valent B, Stack JP (2016a) Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Dis 100:1979–1987

    Article  PubMed  Google Scholar 

  • Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B (2016b) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum patho type of Magnaporthe oryzae. Crop Sci 56:990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leon JLD, Escoppinichi R, Zavala-Fonseca R, Castellanos T, Roder MS, Mujeeb-Kazi A (2010) Phenotypic and genotypic characterization of salt-tolerant wheat genotypes. Cereal Res Commun 38:15–22

    Article  CAS  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379

    Article  Google Scholar 

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE 7:e33234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Duveiller E, Hodson D, Sonder K, Av T (2011) An international perspective on wheat blast. Phytopathology 101:S220

    Google Scholar 

  • Dyck P (1977) Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol 19:711–716

    Article  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Poland JA, Kawamoto K, Buckler E, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emebiri LC, Tan MK, El-Bouhssini M, Wildman O, Jighly A, Tadesse W, Ogbonnaya FC (2017) QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor Appl Genet 130:309–318

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) The future of food and agriculture—trends and challenges. Rome

    Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci 33:331–349

    Article  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding 1. Butterworths, London, pp 1–35

    Google Scholar 

  • Garcia-Olmedo F, Delibes A, Sanchez-Monge R (1977) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. In: Proceedings of the 8th congress of Eucarpia, pp 91–97

    Google Scholar 

  • Gardner KA, Lukas M, Mackay IJ (2016) A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments. Plant Biotechnol J 14:1406–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gate P (1995) Ecophysiologie du blé: de la plante à la culture. Lavoisier, France

    Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Gogel B, Wallwork H, McDonald GK, Smith AB (2013) Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed 32:39–59

    Article  Google Scholar 

  • Genc Y, Taylor J, Rongala J, Oldach K (2014) A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS ONE 9:e98845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Dugo V, Zarco-Tejada P, Nicolas E, Nortes PA, Alarcon JJ, Intrigliolo DS et al (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis Agric 14:660–678

    Article  Google Scholar 

  • Gooding MJ (2009) The wheat crop. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology, 4th edn. AACC International, Minnesota, pp 35–70

    Google Scholar 

  • Gooding MJ, Addisu M, Uppal RK, Snape JW, Jones HE (2012) Effect of wheat dwarfing genes on nitrogen use efficiency. J AgriSci 150:3–22

    CAS  Google Scholar 

  • Gorham J, Hardy C, Jones RW, Joppa L, Law C (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  PubMed  Google Scholar 

  • Gosman N, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695

    Article  CAS  PubMed  Google Scholar 

  • Gou J-Y, Li K, Wu K, Wang X, Lin H, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu D, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J (2015) Wheat stripe rust resistance protein wks1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27:1755–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KP, Balyan SH, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7, 5. https://doi.org/10.3390/agronomy7010005

  • Hailu F, Merker A (2008) Variation in gluten strength and yellow pigment in tetraploid wheat germplasm. Genet Res Crop Evol 55:277–285

    Google Scholar 

  • Hammad SA, Ali OA (2014) Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann AgriSci 59:133–145

    Google Scholar 

  • Hao Y, Chen Z, Wang Y, Bland D, Buck J, Brown-Guedira G, Johnson J (2011) Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123:1401–1411

    Article  PubMed  Google Scholar 

  • Hao Y, Wang Y, Chen Z, Bland D, Li S, Brown-Guedira G, Johnson J (2012) A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat. Mol Breed 30:1453–1464

    Article  Google Scholar 

  • Hao Y, Cambron SE, Chen Z, Wang Y, Bland DE, Buntin GD, Johnson JW (2013) Characterization of new loci for Hessian fly resistance in common wheat. Theor Appl Genet 126:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476

    Article  CAS  PubMed  Google Scholar 

  • Hay R, Kirby E (1991) Convergence and synchrony, a review of the coordination of development in wheat. Aust J Agri Res 42:661–700

    Article  Google Scholar 

  • He Z, Joshi AK, Zhang W (2013) Climate vulnerabilities and wheat production. In: Pielke RA (ed) Climate vulnerability. Academic Press, Oxford, pp 57–67

    Chapter  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018a) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang X, Zhang Y, Ahmad D, Wu L, Jiang P, Ma H (2018b) Molecular characterization and expression of PFT, an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology 108:730–736

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel S, Singh R, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V, Lagudah E (2014) Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet 1–9

    Google Scholar 

  • Hiebert C, Thomas J, McCallum B, Humphreys D, DePauw R, Hayden M, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Hossain M (2010) Global warming induced sea level rise on soil, land and crop production loss in Bangladesh. 19th world congress of soil science, soil solutions for a changing world, Brisbane

    Google Scholar 

  • Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K, Sommerfeldt N, Leconte M, Czembor P, Rodriguez-Algaba J, Thach T, Hansen JG, Lassen P, Justesen AF, Ali S, de Vallavieille-Pope C (2016) Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol 65:402–411

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley and rice, key determinants of Na+ transport and salt tolerance. J Exp Bot 59:927–937

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Espino J, Singh R, Germán S, McCallum B, Park R, Chen W, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 1–18

    Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 7:15662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iehisa JCM, Matsuura T, Mori IC, Takumi S (2014) Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. J Plant Physiol 171:25–34

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp

    Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJúnior A, Castroagudín VL, Reges JTdA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun M-H, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84

    Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Belcher H, Harer J, Weitz JS, BenfeyP H (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jatayev S, Kurishbayev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A, Botayeva M, Zhumalin A, Turbekova A, Soole K, Langridge P, Shavrukov Y (2017) Advantages of amplifluor-like SNP markers over KASP in plant genotyping. BMC Plant Biol 17:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell Environ 33:926–942

    Article  CAS  Google Scholar 

  • Jin H, Wen W, Liu J, Zhai S, Zhang Y, Yan J, Liu Z, Xia X, He Z (2016) Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front Plant Sci 7:1032

    PubMed  PubMed Central  Google Scholar 

  • Jordan KW, Wang S, Lun Y, Gardiner L-J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Geome Biol 16:48

    Google Scholar 

  • Juroszek P, von Tiedemann A (2013) Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136:21–33

    Article  Google Scholar 

  • Kadam S, Singh K, Shukla S, Goel S, Vikram P, Pawar V, Gaikwad K, Khanna-Chopra R, Singh N (2012) Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genom 12:447–464

    Google Scholar 

  • Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1–26

    Article  CAS  Google Scholar 

  • Kassa MT, You FM, Hiebert CW, Pozniak CJ, Fobert PR, Sharpe AG, Menzies JG, Humphreys DG, Rezac Harrison N, Fellers JP, McCallum BD, McCartney CA (2017) Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biol 17:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller B, Wicker T, Krattinger SG (2018) Advances in wheat and pathogen genomics: implications for disease control. Annu Rev Phytopathol 56:67–87

    Article  CAS  PubMed  Google Scholar 

  • Kirigwi F, Van Ginkel M, Brown-Guedira G, Gill B, Paulsen GM, Fritz A (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9:3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449

    Article  PubMed  Google Scholar 

  • Kovalchuk N, Chew W, Sornaraj P et al (2016) The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytol 211:671–687

    Article  CAS  PubMed  Google Scholar 

  • Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Sucher J, Selter LL, Chauhan H, Zhou B, Tang M, Upadhyaya NM, Mieulet D, Guiderdoni E, Weidenbach D, Schaffrath U, Lagudah ES, Keller B (2016) The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol J 14:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223:853–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan HB, Blanchette JT, Okita TW (1985) Wheat invertases: characterization of cell wall-bound and soluble forms. Plant Physiol 78:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S (2017) Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem 5:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lantican MA, Dubin HJ, Morris ML (2005) Impacts of international wheat breeding research in the developing world, 1988–2002. CIMMYT, Mexico DF

    Google Scholar 

  • Law CN, Snape JW, Worland AJ (1981) Reduced fertility of wheat associated with Rht3. Plant breeding institute annual report 1980. Plant Breeding Institute, Cambridge, pp 72–73

    Google Scholar 

  • Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J, Findlay K, Bueno-Sancho V, Corredor-Moreno P, Harrington SA, Kangara N, Berlin A, García R, Germán SE, Hanzalová A, Hodson DP, Hovmøller MS, Huerta-Espino J, Imtiaz M, Mirza JI, Justesen AF, Niks RE, Omrani A, Patpour M, Pretorius ZA, Roohparvar R, Sela H, Singh RP, Steffenson B, Visser B, Fenwick PM, Thomas J, Wulff BBH, Saunders DGO (2018) Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol 1:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Chang X, Wang C, Jing R (2013) Mapping QTL for heat tolerance at grain filling stage in common wheat. Sci Agric Sin 46:2119–2129

    CAS  Google Scholar 

  • Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X (2014) Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci 54:1907–1925

    Article  Google Scholar 

  • Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, Liu Y, Kong Q, Zheng S, Wang Y, Qin B, Cao S, Ding Y, Shi J, Yan H, Wang X, Ran C, Ma Z (2019) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell DB et al (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change 6:1130

    Article  Google Scholar 

  • Liu J, Rasheed A, He Z, Imtiaz M, Arif A, Mahmood T, Ghafoor A, Siddiqui SU, Ilyas MK, Wen W, Gao F, Xie C, Xia X (2019) Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor Appl Genet

    Google Scholar 

  • Lobell D, Gourdji S (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2016) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Å imková H, Bansal U, Luo M-C, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plant 1:15186

    Article  CAS  Google Scholar 

  • Marchal C, Zhang J, Zhang P, Fenwick P, Steuernagel B, Adamski NM, Boyd L, McIntosh R, Wulff BBH, Berry S, Lagudah E, Uauy C (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plant 4:662–668

    Article  CAS  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Masoudi B, Mardi M, Hervan EM, Bihamta MR, Naghavi MR, Nakhoda B, Amini A (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep 33:1790–1803

    Article  CAS  Google Scholar 

  • Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma X-F (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  PubMed  Google Scholar 

  • Mickky BM, Aldesuquy HS (2017) Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egyp J Basic Appl Sci 4:47–54

    Google Scholar 

  • Milne RJ, Dibley KE, Schnippenkoetter W, Mascher M, Lui ACW, Wang L, Lo C, Ashton AR, Ryan PR, Lagudah ES (2019) The wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley. Plant Physiol 179:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Milner SG, Jost M, Taketa S, Mazón ER, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam RK, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger SG, Keller B, Jiang Y, González MY, Zhao Y, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif JC, Scholz U, Mascher M, Stein N (2019) Genebank genomics highlights the diversity of a global barley collection. Nat Genet 51:319–326

    Article  CAS  PubMed  Google Scholar 

  • Milus EA, Seyran E, McNew R (2006) Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the south-central United States. Plant Dis 90:847–852

    Article  CAS  PubMed  Google Scholar 

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

    Article  PubMed  Google Scholar 

  • Mondal S, Mason RE, Huggins T, Hays DB (2015) QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may contribute to lower leaf temperatures under heat stress. Euphytica 201:123–130

    Article  Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plants 1:15018

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RRC, Xu S, Chen PD, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. Adv Agron 122:179–257

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS, Díaz De León JL, Ashraf M, Rajaram S (2019) Breeding strategies for structuring salinity tolerance in wheat. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 121–187

    Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance, an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Murase K, Hirano Y, Sun TP, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    Article  CAS  PubMed  Google Scholar 

  • Mutasa-GottgensE, and Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60, 1979–1989

    Google Scholar 

  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE 12:e0171692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nilsson HE (1991) Hand-held radiometry and IR-thermography of plant diseases in field plot experiments. Intl J Remote Sens 12:545–557

    Article  Google Scholar 

  • Ogbonnaya FC, van Ginkel M, Brettell R (2008) Preface: synthetics for wheat improvement. Proceedings of the 1st synthetic wheat symposium, Sept 2006. Aust J Agr Res 59:389–390

    Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Alvina GK, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME, Tsujimoto H (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Article  Google Scholar 

  • Ogbonnaya FC, Rasheed A, Okechukwu EC, Jighly A, Makdis F, Wuletaw T, Hagras A, Uguru MI, Agbo CU (2017) Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130:1819–1835

    Article  PubMed  Google Scholar 

  • Ortiz R, Braun HJ, Crossa J, Crouch JH et al (2008a) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55:1095–1140

    Article  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M (2008b) Climate change: can wheat beat the heat? Agri Agri Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935

    Article  CAS  PubMed  Google Scholar 

  • Paliwal R, Roder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Kovalchuk A, Langridge P, Fleury D (2015) Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot 66:5481–5492

    Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    Article  PubMed  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP et al (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg ZVI, Fahima T, Krugman T, Abbo S, Yakir DAN, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population. Plant, Cell Environ 32:758–779

    Article  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Giga Sci 6:1–10

    Article  Google Scholar 

  • Pozniak C, Hucl PJ, Stein N, Poland J, Sharpe A, Koh K, Keller B, Ronen G, Muehlbauer G, Distelfeld A, Mayer K, Budak H, Langridge P (2017) Genome assemblies of elite cultivars provides insights into the wheat pan-genome. In: Proceedings of 13th international wheat genetics symposium, 23–28 Apr, Tulln, Austria, 46

    Google Scholar 

  • Prescott JM, Burnett PA, Saari EE, Ransom JK, Bowman J, De Milliano WAJ, Singh RP, Bekele GT (1986) Wheat diseases and pests: a guide for field identification. CIMMYT, Mexico

    Google Scholar 

  • Qiu JW, Schürch AC, Yahiaoui N, Dong LL, Fan HJ, Zhang ZJ, Keller B, Ling HQ (2007) Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet 115:159–168

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AS, McCornick PG, Qadir M, Aslam Z (2008) Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric Water Manag 95:1–10

    Article  Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108:17905–17909

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajaram S, Van Ginkel M, Fischer R (1995) CIMMYT’s wheat breeding mega-environments (ME). In: Proceedings of the 8th international wheat genetic symposium, vol 2, China Agricultural Scientech Press, Beijing, China, pp 1101–1106

    Google Scholar 

  • Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Wen W, Gao FM, Zhai S, Jin H, Liu JD, Guo Q, Zhang YJ, Dreisigacker S, Xia XC, He ZH (2016) Development and validation of KASP assays for functional genes underpinning key economic traits in wheat. Theor Appl Genet 129:1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia XC, Khan A, Xu Y, Varshney RK, He ZH (2017) Crop breeding chips and genotyping platforms: progress, challenges and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He ZH, Rajaram S (2018a) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121:603–616

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Ogbonnaya FC, Lagudah E, Appels R, He Z (2018b) The goat grass genome’s role in wheat improvement. Nat Plants 4:56–58

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007a) Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007b) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crop Res 100:10–23

    Article  Google Scholar 

  • Rebetzke GJ, Verbyla AP, Verbyla KL, Morell MK, Cavanagh CR (2014) Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J 12:219–230

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Riaz A, Athiyannan N, Periyannan S, Afanasenko O, Mitrofanova O, Aitken EAB, Lagudah E, Hickey LT (2016) Mining Vavilov’s treasure chest of wheat diversity for adult plant resistance to Puccinia triticina. Plant Dis 101:317–323

    Article  PubMed  Google Scholar 

  • Riaz A, Hathorn A, Dinglasan E, Ziems L, Richard C, Singh D, Mitrofanova O, Afanasenko O, Aitken E, Godwin I, Hickey L (2017) Into the vault of the Vavilov wheats: old diversity for new alleles. Genet Resour Crop Evol 64:531–544

    Article  Google Scholar 

  • Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F et al (2018) High throughput SNP discovery and genotyping in hexaploid wheat. PLoS ONE 13:e0186329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaldo A, Gilbert B, Boni R, Krattinger SG, Singh D, Park RF, Lagudah E, Ayliffe M (2017) The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnol J 15:894–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risk JM, Selter LL, Chauhan H, Krattinger SG, Kumlehn J, Hensel G, Viccars LA, Richardson TM, Buesing G, Troller A, Lagudah ES, Keller B (2013) The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol J 11:847–854

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trend Plant Sci 9:606–613

    Article  CAS  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 1–23

    Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y-L, Jin Y, Yang Y-J, Li G-J, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:R88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem U, Khaliq I, Mahmood T, Rafique M (2006) Phenotypic and genotypic correlation coefficients between yield and yield components in wheat. J Agric Res 44:1–6

    Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Geome Biol 17:221

    Google Scholar 

  • Sapkota S, Hao Y, Johnson J, Lopez B, Bland D, Chen Z, Sutton S, Buck J, Youmans J, Mergoum M (2019) Genetic mapping of a major gene for leaf rust resistance in soft red winter wheat cultivar AGS 2000. Mol Breed 39:8

    Article  CAS  Google Scholar 

  • Sardouie-Nasab S, Mohammadi-Nejad G, Nakhoda B (2014) Field screening of salinity tolerance in iranian bread wheat lines. Crop Sci 54:1489–1496

    Article  Google Scholar 

  • Saunders DGO, Pretorius ZA, Hovmøller MS (2019) Tackling the re-emergence of wheat stem rust in Western Europe. Commun Biol 2:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheben A, Batley J, Edwards D (2016) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161

    Article  CAS  Google Scholar 

  • Schnippenkoetter W, Lo C, Liu G, Dibley K, Chan WL, White J, Milne R, Zwart A, Kwong E, Keller B, Godwin I, Krattinger SG, Lagudah E (2017) The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 15:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B (2017) Fundamental wheat stripe rust research in the 21st century. New Phytol 213:1625–1631

    Article  CAS  PubMed  Google Scholar 

  • Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, Ellis M, Amri A, Petroli CD, Wenzl P, Singh S (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS ONE 10:e0132112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Shah L, Ali A, Yahya M, Zhu Y, Wang S, Si H, Rahman H, Ma C (2018) Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathol 67:532–548

    Article  CAS  Google Scholar 

  • Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbrook J, Fleury D (2016) Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC Plant Biol 16:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamaya NJ, Shavrukov Y, Langridge P, Roy SJ, Tester M (2017) Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biol 17:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203:449–467

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Sip V, Chrpova J, Zofajova A, Milec Z, Mihalik D, Pankova K, Snape JW (2011) Evidence of selective changes in winter wheat in middle-European environments reflected by allelic diversity at loci affecting plant height and photoperiodic response. J AgriSci 149:313–326

    CAS  Google Scholar 

  • Sorensen CK, Howmoller MS, Leconte M, Dedryverperson F, Vallavieille CPD (2014) New races of Puccinia striiformis found in europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology 104:1042–1051

    Article  PubMed  Google Scholar 

  • Srichumpa P, Brunner S, Keller B, Yahiaoui N (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol 139:885–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34:652

    Article  CAS  PubMed  Google Scholar 

  • Stratonovitch P, Semenov M (2015) Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J Exp Bot 66:3599–3609

    Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St. Amand P, Yu J, Zhang Z, Bai G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Google Scholar 

  • Sucher J, Boni R, Yang P, Rogowsky P, Büchner H, Kastner C, Kumlehn J, Krattinger SG, Keller B (2017) The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol J 15:489–496

    Article  CAS  PubMed  Google Scholar 

  • Sugiura R, Noguchi N, Ishii K (2007) Correction of low-altitude thermal images applied to estimating soil water status. BiosysEng 96:301–313

    Google Scholar 

  • Sukumaran S, dreisigacker S, Lopes MS, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet128:353–363

    Google Scholar 

  • Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Quick J (1991) Chromosomal locations of genes for heat tolerance in tetraploid wheat. Cereal Res Commun 431–437

    Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. Plos ONE 10:e0141339. Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 60:26–45

    Google Scholar 

  • Talukder S, Babar M, Vijayalakshmi K, Poland J, Prasad P, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:233–234

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Å imková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793

    Article  CAS  PubMed  Google Scholar 

  • Thomelin P, Bonneau J, Taylor J, Choulet F, Sourdille P, Langridge P (2016) Positional cloning of a QTL, qDHY. 3BL, on chromosome 3BL for drought and heat tolerance in bread wheat. In: Proceedings of the plant and animal genome conference (PAG XXIV), San Diego, CA, USA, p P0850

    Google Scholar 

  • Touzy G, Rincent R, Bogard M, Lafarge S, Dubreuil P, Mini A, Deswarte J-C, Beauchêne K, Le Gouis J, Praud S (2019) Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (Triticum aestivum L.). Theor Appl Genet 132:2859–2880

    Article  CAS  PubMed  Google Scholar 

  • Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Žalud Z, Semenov MA (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Change 4:637

    Article  Google Scholar 

  • Turki N, Shehzad T, Harrabi M, Okuno K (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201:29–41

    Article  CAS  Google Scholar 

  • Urashima AS, Igarashi S, Kato H (1994) Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216

    Article  Google Scholar 

  • Uto K, Seki H, Saito G, Kosugi Y (2013) Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE J Sel Top Appl Earth Obs Remote Sens 6:851–860

    Article  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283

    Article  CAS  PubMed  Google Scholar 

  • Vashev B, Gaiser T, Ghawana T, de Vries A, Stahr K (2010) Biosafor project deliverable 9: cropping potentials for saline areas in India. University of Hohenheim, Hohenheim, Pakistan and Bangladesh

    Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP, Fuentes-Davila G, Reynolds M, Sonders K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S (2016) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM et al (2014a) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Simmonds J, Pan Q, Davidson D, He F, Battal A, Akhunova A, Trick HN, Uauy C, Akhunov E (2018) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131:2463–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E (2019) Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J. https://doi.org/10.1111/tpj.14440

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agri Res 58:567–575

    Article  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Worland AJ (1986) Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35:857–866

    Article  CAS  Google Scholar 

  • Worland AJ, Korzun V, Roder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z (2018) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131:1481–1496

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Liu G, Boeven PHG, Longin CFH, Mirdita V, Kazman E, Zhao Y, Reif JC (2018) Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet 131:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, BartoÅ¡ J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Sun Q, Zhang S (1996) Chromosomal location of genes for heat tolerance as measured by membrane thermostability of common wheat cv. Hope. Hereditas 18:1–3

    Google Scholar 

  • Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Mapping QTLs with epistatic effects and QTL x treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTL s for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Xu Y-F, Li S-S, Li L-H, Ma F-F, Fu X-Y, Shi Z-L, Xu H-X, Ma P-T, An D-G (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34

    Article  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trend Plant Sci 10:615–620

    Article  CAS  Google Scholar 

  • Yang D-L, Jing R-L, Chang X-P, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571

    Google Scholar 

  • Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Luang S, Harris J, Riboni M, Li Y, Bazanova N, Hrmova M, Haefele S, Kovalchuk N, Lopato S (2018) Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnol J 16:1227–1240

    Article  CAS  PubMed  Google Scholar 

  • Yao F, Zhang X, Ye X, Li J, Long L, Yu C, Li J, Wang Y, Wu Y, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G (2019) Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genet 20:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R Catalina A, González MR, Martín P (2013) Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). AgriForMeteorol171–172:281–294

    Google Scholar 

  • Zhang X, Shen X, Hao Y, Cai J, Ohm H, Kong L (2011) A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet 122:263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Huang L, Gao A, Zhang J, Yang X, Liu W, Li X, Li L (2015) A high-density genetic map for P genome of Agropyron Gaertn. Based on specific-locus amplified fragment sequencing (SLAF-seq). Planta 242:1335–1347

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J (2017a) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci USA 114:E9483–E9492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017b) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Bodner G, Rewald B (2016) Phenotyping: using machine learning for improved pairwise genotype classification based on root traits. Front Plant Sci 7:1864

    PubMed  PubMed Central  Google Scholar 

  • Zhong D, Novais J, Grift TE, Bohn M, Han J (2009) Maize root complexity analysis using a support vector machine method. Comput Electron Agri 69:46–50

    Article  Google Scholar 

  • Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Xu D, Cheng S, Gao C, Xia X, Hao Y, He Z (2018) Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin 44:473–482

    Article  Google Scholar 

  • Zhu Z, Hao Y, Mergoum M, Bai G, Humphreys G, Cloutier S, Xia X, He Z (2019) Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J. https://doi.org/10.1016/jcj201906003

    Article  Google Scholar 

  • Zikhali M, Wingen LU, Griffiths S (2016) Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot 67:287–299

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (2016YFE0108600 and 2016YFD0101802), National Natural Science Foundation of China for International Collaborations (31761143006), and Agricultural Science and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Awais Rasheed or Zhonghu He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hao, Y. et al. (2020). Advanced Genomics and Breeding Tools to Accelerate the Development of Climate Resilient Wheat. In: Kole, C. (eds) Genomic Designing of Climate-Smart Cereal Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93381-8_2

Download citation

Publish with us

Policies and ethics