Skip to main content

Optical and Cross-Sectional Imaging Technologies for Bladder Cancer

  • Chapter
  • First Online:
Genitourinary Cancers

Part of the book series: Cancer Treatment and Research ((CTAR,volume 175))

Abstract

Optical and cross-sectional imaging plays critical roles in bladder cancer diagnostics. White light cystoscopy remains the cornerstone for the management of non-muscle-invasive bladder cancer. In the last decade, significant technological improvements have been introduced for optical imaging to address the known shortcomings of white light cystoscopy. Enhanced cystoscopy modalities such as blue light cystoscopy and narrowband imaging survey a large area of the urothelium and provide contrast enhancement to detect additional lesions and decrease cancer recurrence. However, higher false-positive rates accompany the gain of sensitivity. Optical biopsy technologies, including confocal laser endomicroscopy and optical coherence tomography, provide cellular resolutions combined with subsurface imaging, thereby enabling optical-based cancer characterization, and may lead to real-time cancer grading and staging. Coupling of fluorescently labeled binding agents with optical imaging devices may translate into high molecular specificity, thus enabling visualization and characterization of biological processes at the molecular level. For cross-sectional imaging, upper urinary tract evaluation and assessment potential extravesical tumor extension and metastases are currently the primary roles, particularly for management of muscle-invasive bladder cancer. Multi-parametric MRI, including dynamic gadolinium-enhanced and diffusion-weighted sequences, has been investigated for primary bladder tumor detection. Ultrasmall superparamagnetic particles of iron oxide (USPIO) are a new class of contrast agents that increased the accuracy of lymph node imaging. Combination of multi-parametric MRI with positron emission tomography is on the horizon to improve accuracy rates for primary tumor diagnostics as well as lymph node evaluation. As these high-resolution optical and cross-sectional technologies emerge and develop, judicious assessment and validation await for their clinical integration toward improving the overall management of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljabery F, Lindblom G, Skoog S, Shabo I, Olsson H, Rosell J, Jahnson S (2015) PET/CT versus conventional CT for detection of lymph node metastases in patients with locally advanced bladder cancer. BMC Urol 15:87. https://doi.org/10.1186/s12894-015-0080-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amara N, Palapattu GS, Schrage M, Gu Z, Thomas GV, Dorey F, Said J, Reiter RE (2001) Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Can Res 61(12):4660–4665

    CAS  Google Scholar 

  3. Andreev OA, Engelman DM, Reshetnyak YK (2014) Targeting diseased tissues by pHLIP insertion at low cell surface pH. Frontiers in Physiol 5:97. https://doi.org/10.3389/fphys.2014.00097

    Article  Google Scholar 

  4. Anidjar M, Cussenot O, Blais J, Bourdon O, Avrillier S, Ettori D, Villette JM, Fiet J, Teillac P, Le Duc A (1996) Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study. J Urol 155(5):1771–1774

    Article  CAS  Google Scholar 

  5. Babjuk M, Bohle A, Burger M, Capoun O, Cohen D, Comperat EM, Hernandez V, Kaasinen E, Palou J, Roupret M, van Rhijn BW, Shariat SF, Soukup V, Sylvester RJ, Zigeuner R (2017) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol 71(3):447–461. https://doi.org/10.1016/j.eururo.2016.05.041

    Article  Google Scholar 

  6. Babjuk M, Soukup V, Petrik R, Jirsa M, Dvoracek J (2005) 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer. BJU Int 96(6):798–802. https://doi.org/10.1111/j.1464-410X.2004.05715.x

    Article  CAS  PubMed  Google Scholar 

  7. Bader P, Burkhard FC, Markwalder R, Studer UE (2002) Is a limited lymph node dissection an adequate staging procedure for prostate cancer?. J Urol 168 (2):514–518; discussion 518

    Article  Google Scholar 

  8. Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ (2012) Targeting the metabolic microenvironment of tumors. Advances in pharmacology (San Diego, Calif) 65:63–107. https://doi.org/10.1016/b978-0-12-397927-8.00004-x

    Google Scholar 

  9. Birkhauser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G, Vermathen P, Fleischmann A, Thoeny HC (2013) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol 64(6):953–960. https://doi.org/10.1016/j.eururo.2013.07.032

    Article  PubMed  Google Scholar 

  10. Blick CG, Nazir SA, Mallett S, Turney BW, Onwu NN, Roberts IS, Crew JP, Cowan NC (2012) Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int 110(1):84–94. https://doi.org/10.1111/j.1464-410X.2011.10664.x

    Article  PubMed  Google Scholar 

  11. Brausi M, Collette L, Kurth K, van der Meijden AP, Oosterlinck W, Witjes JA, Newling D, Bouffioux C, Sylvester RJ (2002) Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol 41(5):523–531

    Article  Google Scholar 

  12. Burger M, Grossman HB, Droller M, Schmidbauer J, Hermann G, Dragoescu O, Ray E, Fradet Y, Karl A, Burgues JP, Witjes JA, Stenzl A, Jichlinski P, Jocham D (2013) Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol 64(5):846–854. https://doi.org/10.1016/j.eururo.2013.03.059

    Article  PubMed  Google Scholar 

  13. Carlsson J (2012) Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors. Tumour Biol: J Int Soc Oncodevelopmental Biol Med 33(3):653–659. https://doi.org/10.1007/s13277-011-0307-x

    Article  CAS  Google Scholar 

  14. Cauberg EC, de Bruin DM, Faber DJ, van Leeuwen TG, de la Rosette JJ, de Reijke TM (2009) A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur Urol 56(2):287–296. https://doi.org/10.1016/j.eururo.2009.02.033

    Article  PubMed  Google Scholar 

  15. Cauberg EC, Kloen S, Visser M, de la Rosette JJ, Babjuk M, Soukup V, Pesl M, Duskova J, de Reijke TM (2010) Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer. Urology 76(3):658–663. https://doi.org/10.1016/j.urology.2009.11.075

    Article  PubMed  Google Scholar 

  16. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106(33):14016–14021. https://doi.org/10.1073/pnas.0906549106

    Article  PubMed  Google Scholar 

  17. Chang SS, Boorjian SA, Chou R, Clark PE, Daneshmand S, Konety BR, Pruthi R, Quale DZ, Ritch CR, Seigne JD, Skinner EC, Smith ND, McKiernan JM (2016) Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J Urol 196(4):1021–1029. https://doi.org/10.1016/j.juro.2016.06.049

    Article  Google Scholar 

  18. Chang TC, Liu JJ, Hsiao ST, Pan Y, Mach KE, Leppert JT, McKenney JK, Rouse RV, Liao JC (2013) Interobserver agreement of confocal laser endomicroscopy for bladder cancer. J Endourol 27(5):598–603. https://doi.org/10.1089/end.2012.0549

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang TC, Liu JJ, Liao JC (2013) Probe-based confocal laser endomicroscopy of the urinary tract: the technique. J Visualized Exp: Jove 71:e4409. https://doi.org/10.3791/4409

    Article  Google Scholar 

  20. Chen SP, Kirsch S, Zlatev DV, Chang T, Comstock B, Lendvay TS, Liao JC (2016) Optical Biopsy of Bladder Cancer Using Crowd-Sourced Assessment. JAMA Surgery 151(1):90–93. https://doi.org/10.1001/jamasurg.2015.3121

    Article  PubMed  Google Scholar 

  21. Cheng L, Neumann RM, Weaver AL, Cheville JC, Leibovich BC, Ramnani DM, Scherer BG, Nehra A, Zincke H, Bostwick DG (2000) Grading and staging of bladder carcinoma in transurethral resection specimens. Correlation with 105 matched cystectomy specimens. Am J Clin Pathol 113(2):275–279. https://doi.org/10.1309/94b6-8vfb-mn9j-1nf5

    Article  CAS  PubMed  Google Scholar 

  22. Cina SJ, Epstein JI, Endrizzi JM, Harmon WJ, Seay TM, Schoenberg MP (2001) Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol 32(6):630–637. https://doi.org/10.1053/hupa.2001.24999

    Article  CAS  PubMed  Google Scholar 

  23. Crow P, Uff JS, Farmer JA, Wright MP, Stone N (2004) The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU Int 93(9):1232–1236. https://doi.org/10.1111/j.1464-410X.2004.04852.x

    Article  CAS  PubMed  Google Scholar 

  24. Daneshmand S, Ahmadi H, Huynh LN, Dobos N (2012) Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology 80(6):1313–1318. https://doi.org/10.1016/j.urology.2012.07.056

    Article  PubMed  Google Scholar 

  25. Daniltchenko DI, Riedl CR, Sachs MD, Koenig F, Daha KL, Pflueger H, Loening SA, Schnorr D (2005) Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-year results of a prospective randomized study. J Urol 174(6):2129–2133, discussion 2133. https://doi.org/10.1097/01.ju.0000181814.73466.14

    Article  CAS  Google Scholar 

  26. de Jong BW, Bakker Schut TC, Wolffenbuttel KP, Nijman JM, Kok DJ, Puppels GJ (2002) Identification of bladder wall layers by Raman spectroscopy. J Urol 168(4 Pt 2):1771–1778. https://doi.org/10.1097/01.ju.0000030059.28948.c6

    Article  CAS  PubMed  Google Scholar 

  27. Deserno WM, Harisinghani MG, Taupitz M, Jager GJ, Witjes JA, Mulders PF, Hulsbergen van de Kaa CA, Kaufmann D, Barentsz JO (2004) Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233(2):449–456. https://doi.org/10.1148/radiol.2332031111

    Article  PubMed  Google Scholar 

  28. Draga RO, Grimbergen MC, Vijverberg PL, van Swol CF, Jonges TG, Kummer JA, Ruud Bosch JL (2010) In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 82(14):5993–5999. https://doi.org/10.1021/ac100448p

    Article  CAS  PubMed  Google Scholar 

  29. Fleischmann A, Thalmann GN, Markwalder R, Studer UE (2005) Extracapsular extension of pelvic lymph node metastases from urothelial carcinoma of the bladder is an independent prognostic factor. J Clin Oncol: Official J Am Soc Clin Oncol 23(10):2358–2365. https://doi.org/10.1200/jco.2005.03.084

    Article  Google Scholar 

  30. Fradet Y, Grossman HB, Gomella L, Lerner S, Cookson M, Albala D, Droller MJ (2007) A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase III, multicenter study. J Urol178(1):68–73; discussion 73. https://doi.org/10.1016/j.juro.2007.03.028

    Article  Google Scholar 

  31. Gandrup KL, Logager VB, Bretlau T, Nordling J, Thomsen HS (2015) Diagnosis of bladder tumours in patients with macroscopic haematuria: a prospective comparison of split-bolus computed tomography urography, magnetic resonance urography and flexible cystoscopy. Scand J Urol 49(3):224–229. https://doi.org/10.3109/21681805.2014.981203

    Article  PubMed  Google Scholar 

  32. Goh AC, Tresser NJ, Shen SS, Lerner SP (2008) Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology 72(1):133–137. https://doi.org/10.1016/j.urology.2008.02.002

    Article  PubMed  Google Scholar 

  33. Golijanin J, Amin A, Moshnikova A, Brito JM, Tran TY, Adochite RC, Andreev GO, Crawford T, Engelman DM, Andreev OA, Reshetnyak YK, Golijanin D (2016) Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proc Natl Acad Sci USA 113(42):11829–11834. https://doi.org/10.1073/pnas.1610472113

    Article  CAS  PubMed  Google Scholar 

  34. Gono K (2015) Narrow band imaging: technology basis and research and development history. In: Clin Endosc, vol 48. vol 6. pp 476–480. https://doi.org/10.5946/ce.2015.48.6.476

    Article  Google Scholar 

  35. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, Yoshida S, Hamamoto Y, Endo T (2004) Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 9(3):568–577. https://doi.org/10.1117/1.1695563

    Article  PubMed  Google Scholar 

  36. Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G, Hughes S, Evison F, Dasgupta P, O’Brien T, Khan MS (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114(3):389–395. https://doi.org/10.1111/bju.12608

    Article  CAS  PubMed  Google Scholar 

  37. Greco F, Cadeddu JA, Gill IS, Kaouk JH, Remzi M, Thompson RH, van Leeuwen FW, van der Poel HG, Fornara P, Rassweiler J (2014) Current perspectives in the use of molecular imaging to target surgical treatments for genitourinary cancers. Eur Urol 65(5):947–964. https://doi.org/10.1016/j.eururo.2013.07.033

    Article  CAS  PubMed  Google Scholar 

  38. Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, Soloway MS, Karl A, Burger M (2012) Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 188(1):58–62. https://doi.org/10.1016/j.juro.2012.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hermes B, Spoler F, Naami A, Bornemann J, Forst M, Grosse J, Jakse G, Knuchel R (2008) Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of noninvasive evaluation of tumor invasion. Urology 72(3):677–681. https://doi.org/10.1016/j.urology.2008.02.062

    Article  PubMed  Google Scholar 

  40. Herr HW, Donat SM (2008) A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int 102(9):1111–1114. https://doi.org/10.1111/j.1464-410X.2008.07846.x

    Article  PubMed  Google Scholar 

  41. Hilton S, Jones LP (2014) Recent advances in imaging cancer of the kidney and urinary tract. Surg Oncol Clin N Am 23(4):863–910. https://doi.org/10.1016/j.soc.2014.06.001

    Article  PubMed  Google Scholar 

  42. Hsu M, Gupta M, Su LM, Liao JC (2014) Intraoperative optical imaging and tissue interrogation during urologic surgery. Curr Opin Urol 24(1):66–74. https://doi.org/10.1097/MOU.0000000000000010

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jocham D, Witjes F, Wagner S, Zeylemaker B, van Moorselaar J, Grimm MO, Muschter R, Popken G, Konig F, Knuchel R, Kurth KH (2005) Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol 174(3):862–866; discussion 866. https://doi.org/10.1097/01.ju.0000169257.19841.2a

    Article  Google Scholar 

  44. Karl A, Stepp H, Willmann E, Buchner A, Hocaoglu Y, Stief C, Tritschler S (2010) Optical coherence tomography for bladder cancer—ready as a surrogate for optical biopsy? Results of a prospective mono-centre study. Eur J Med Res 15(3):131–134

    Article  CAS  Google Scholar 

  45. Kausch I, Sommerauer M, Montorsi F, Stenzl A, Jacqmin D, Jichlinski P, Jocham D, Ziegler A, Vonthein R (2010) Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol 57(4):595–606. https://doi.org/10.1016/j.eururo.2009.11.041

    Article  PubMed  Google Scholar 

  46. Kibel AS, Dehdashti F, Katz MD, Klim AP, Grubb RL, Humphrey PA, Siegel C, Cao D, Gao F, Siegel BA (2009) Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol: Official J Am Soc Clin Oncol 27(26):4314–4320. https://doi.org/10.1200/jco.2008.20.6722

    Article  Google Scholar 

  47. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, Kiemeney L, Kriegmair M, Montironi R, Murphy WM, Sesterhenn IA, Tachibana M, Weider J (2005) Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66(6 Suppl 1):4–34. https://doi.org/10.1016/j.urology.2005.07.062

    Article  PubMed  Google Scholar 

  48. Kiss B, Thoeny HC, Studer UE (2016) Current status of lymph node imaging in bladder and prostate cancer. Urology 96:1–7. https://doi.org/10.1016/j.urology.2016.02.014

    Article  PubMed  Google Scholar 

  49. Klan R, Loy V, Huland H (1991) Residual tumor discovered in routine second transurethral resection in patients with stage T1 transitional cell carcinoma of the bladder. J Urol 146(2):316–318

    Article  CAS  Google Scholar 

  50. Kobayashi S, Koga F, Yoshida S, Masuda H, Ishii C, Tanaka H, Komai Y, Yokoyama M, Saito K, Fujii Y, Kawakami S, Kihara K (2011) Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness. Eur Radiol 21(10):2178–2186. https://doi.org/10.1007/s00330-011-2174-7

    Article  PubMed  Google Scholar 

  51. Kolozsy Z (1991) Histopathological “self control” in transurethral resection of bladder tumours. Br J Urol 67(2):162–164

    Article  CAS  Google Scholar 

  52. Kriegmair MC, Bergen T, Ritter M, Mandel P, Michel MS, Wittenberg T, Bolenz C (2017) Digital mapping of the urinary bladder: potential for standardized cystoscopy reports. Urology. https://doi.org/10.1016/j.urology.2017.02.019

    Article  PubMed  Google Scholar 

  53. Lapini A, Minervini A, Masala A, Schips L, Pycha A, Cindolo L, Giannella R, Martini T, Vittori G, Zani D, Bellomo F, Cosciani Cunico S (2012) A comparison of hexaminolevulinate (Hexvix(R)) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: results of the HeRo observational study. Surg Endosc 26(12):3634–3641. https://doi.org/10.1007/s00464-012-2387-0

    Article  PubMed  Google Scholar 

  54. Lee CS, Yoon CY, Witjes JA (2008) The past, present and future of cystoscopy: the fusion of cystoscopy and novel imaging technology. BJU Int 102(9 Pt B):1228–1233. https://doi.org/10.1111/j.1464-410x.2008.07964.x

  55. Lepin EJ, Leyton JV, Zhou Y, Olafsen T, Salazar FB, McCabe KE, Hahm S, Marks JD, Reiter RE, Wu AM (2010) An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging 37(8):1529–1538. https://doi.org/10.1007/s00259-010-1433-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lerner SP, Goh A (2015) Novel endoscopic diagnosis for bladder cancer. Cancer 121(2):169–178. https://doi.org/10.1002/cncr.28905

    Article  PubMed  Google Scholar 

  57. Lerner SP, Liu H, Wu MF, Thomas YK, Witjes JA (2012) Fluorescence and white light cystoscopy for detection of carcinoma in situ of the urinary bladder. Urol Oncol 30(3):285–289. https://doi.org/10.1016/j.urolonc.2010.09.009

    Article  PubMed  Google Scholar 

  58. Li K, Lin T, Fan X, Duan Y, Huang J (2013) Diagnosis of narrow-band imaging in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. Int J Urol: Official J Jpn Urol Assoc 20(6):602–609. https://doi.org/10.1111/j.1442-2042.2012.03211.x

    Article  Google Scholar 

  59. Liu JJ, Droller MJ, Liao JC (2012) New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol 188(2):361–368. https://doi.org/10.1016/j.juro.2012.03.127

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lurie KL, Angst R, Seibel EJ, Liao JC, Ellerbee Bowden AK (2016) Registration of free-hand OCT daughter endoscopy to 3D organ reconstruction. Biomed Opt Express 7(12):4995–5009. https://doi.org/10.1364/boe.7.004995

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lurie KL, Angst R, Zlatev DV, Liao JC, Ellerbee Bowden AK (2017) 3D reconstruction of cystoscopy videos for comprehensive bladder records. Biomed Opt Express 8(4):2106–2123. https://doi.org/10.1364/BOE.8.002106

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ma T, Wang W, Jiang Z, Shao G, Guo L, Li J, Zhang L, Liu Y (2015) Narrow band imaging-assisted holmium laser resection reduced the recurrence rate of non-muscle invasive bladder cancer: a prospective, randomized controlled study. Zhonghua yi Xue za Zhi 95(37):3032–3035

    PubMed  Google Scholar 

  63. Manyak MJ, Gladkova ND, Makari JH, Schwartz AM, Zagaynova EV, Zolfaghari L, Zara JM, Iksanov R, Feldchtein FI (2005) Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. J Endourol 19(5):570–574. https://doi.org/10.1089/end.2005.19.570

    Article  PubMed  Google Scholar 

  64. Mark JR, Gelpi-Hammerschmidt F, Trabulsi EJ, Gomella LG (2012) Blue light cystoscopy for detection and treatment of non-muscle invasive bladder cancer. Can J Urol 19(2):6227–6231

    PubMed  Google Scholar 

  65. Mazzucchelli R, Barbisan F, Santinelli A, Lopez-Beltran A, Cheng L, Scarpelli M, Montironi R (2009) Immunohistochemical expression of prostate stem cell antigen in cystoprostatectomies with incidental prostate cancer. Int J Immunopathology Pharmacology 22(3):755–762. https://doi.org/10.1177/039463200902200321

    Article  CAS  Google Scholar 

  66. McMahon CJ, Rofsky NM, Pedrosa I (2010) Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology 254(1):31–46. https://doi.org/10.1148/radiol.2541090361

    Article  PubMed  Google Scholar 

  67. Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10(4):128–138

    Article  Google Scholar 

  68. Mowatt G, NDow J, Vale L, Nabi G, Boachie C, Cook JA, Fraser C, Griffiths TR, Aberdeen Technology Assessment Review G (2011) Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis. Int J Technol Assess Health Care 27(1):3–10. https://doi.org/10.1017/s0266462310001364

    Article  Google Scholar 

  69. Naito S, Algaba F, Babjuk M, Bryan RT, Sun YH, Valiquette L, de la Rosette J (2016) The clinical research office of the endourological society (CROES) multicentre randomised trial of narrow band imaging-assisted transurethral resection of bladder tumour (TURBT) versus conventional white light imaging-assisted turbt in primary non-muscle-invasive bladder cancer patients: trial protocol and 1-year results. Eur Urol 70(3):506–515. https://doi.org/10.1016/j.eururo.2016.03.053

    Article  PubMed  Google Scholar 

  70. Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75(5):465–474. https://doi.org/10.1038/ki.2008.496

    Article  CAS  PubMed  Google Scholar 

  71. Oyen RH, Van Poppel HP, Ameye FE, Van de Voorde WA, Baert AL, Baert LV (1994) Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. Radiology 190(2):315–322. https://doi.org/10.1148/radiology.190.2.8284375

    Article  CAS  PubMed  Google Scholar 

  72. Pan Y, Volkmer JP, Mach KE, Rouse RV, Liu JJ, Sahoo D, Chang TC, Metzner TJ, Kang L, van de Rijn M, Skinner EC, Gambhir SS, Weissman IL, Liao JC (2014) Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Science translational medicine 6 (260):260ra148. https://doi.org/10.1126/scitranslmed.3009457

    Article  Google Scholar 

  73. Pfost B, Seidl C, Autenrieth M, Saur D, Bruchertseifer F, Morgenstern A, Schwaiger M, Senekowitsch-Schmidtke R (2009) Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb defeats human bladder carcinoma in xenografted nude mice. J Nucl Med 50(10):1700–1708. https://doi.org/10.2967/jnumed.109.065961

    Article  CAS  PubMed  Google Scholar 

  74. Rao AR, Hanchanale V, Javle P, Karim O, Motiwala H (2007) Spectroscopic view of life and work of the Nobel Laureate Sir C.V. Raman. J Endourol 21(1):8–11. https://doi.org/10.1089/end.2006.9998

    Article  PubMed  Google Scholar 

  75. Ren H, Waltzer WC, Bhalla R, Liu J, Yuan Z, Lee CS, Darras F, Schulsinger D, Adler HL, Kim J, Mishail A, Pan Y (2009) Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography. Urology 74(6):1351–1357. https://doi.org/10.1016/j.urology.2009.04.090

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rink M, Babjuk M, Catto JW, Jichlinski P, Shariat SF, Stenzl A, Stepp H, Zaak D, Witjes JA (2013) Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol 64(4):624–638. https://doi.org/10.1016/j.eururo.2013.07.007

    Article  PubMed  Google Scholar 

  77. Robinson JP (2001) Chapter 4 Principles of confocal microscopy. Methods Cell Biol 63:89–106. https://doi.org/10.1016/s0091-679x(01)63008-5

    Chapter  Google Scholar 

  78. Rosenkrantz AB, Friedman KP, Ponzo F, Raad RA, Jackson K, Huang WC, Balar AV (2017) Prospective pilot study to evaluate the incremental value of PET information in patients with bladder cancer undergoing 18F-FDG simultaneous PET/MRI. Clin Nucl Med 42(1):e8–e15. https://doi.org/10.1097/RLU.0000000000001432

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rouanne M, Girma A, Neuzillet Y, Vilain D, Radulescu C, Letang N, Yonneau L, Herve JM, Botto H, Le Stanc E, Lebret T (2014) Potential impact of 18F-FDG PET/CT on patients selection for neoadjuvant chemotherapy before radical cystectomy. Eur J Surgical Oncology: J Eur Soc Surgical Oncol Br Assoc Surgical Oncol 40(12):1724–1730. https://doi.org/10.1016/j.ejso.2014.08.479

    Article  CAS  Google Scholar 

  80. Sadow CA, Silverman SG, O’Leary MP, Signorovitch JE (2008) Bladder cancer detection with CT urography in an Academic Medical Center. Radiology 249(1):195–202. https://doi.org/10.1148/radiol.2491071860

    Article  PubMed  Google Scholar 

  81. Schafauer C, Ettori D, Roupret M, Phe V, Tualle JM, Tinet E, Avrillier S, Egrot C, Traxer O, Cussenot O (2013) Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study. J Urol 190(1):271–277. https://doi.org/10.1016/j.juro.2013.01.100

    Article  PubMed  Google Scholar 

  82. Schmidbauer J, Remzi M, Klatte T, Waldert M, Mauermann J, Susani M, Marberger M (2009) Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur Urol 56(6):914–919. https://doi.org/10.1016/j.eururo.2009.07.042

    Article  PubMed  Google Scholar 

  83. Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M (2004) Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol 171(1):135–138. https://doi.org/10.1097/01.ju.0000100480.70769.0e

    Article  PubMed  Google Scholar 

  84. Schumacher MC, Holmang S, Davidsson T, Friedrich B, Pedersen J, Wiklund NP (2010) Transurethral resection of non-muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic Acid under visible and fluorescent light: results of a prospective, randomised, multicentre study. Eur Urol 57(2):293–299. https://doi.org/10.1016/j.eururo.2009.10.030

    Article  CAS  PubMed  Google Scholar 

  85. Sengottayan VK, Vasudeva P, Dalela D (2008) Intravesical real-time imaging and staging of bladder cancer: use of optical coherence tomography. Ind J Urol: IJU: J Urol Soc Ind 24(4):592–593

    Google Scholar 

  86. Shen P, Yang J, Wei W, Li Y, Li D, Zeng H, Wang J (2012) Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int 110(6 Pt B):E209–215. https://doi.org/10.1111/j.1464-410x.2011.10892.x

    Article  Google Scholar 

  87. Soper TD, Porter MP, Seibel EJ (2012) Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans Bio-med Eng 59(6):1670–1680. https://doi.org/10.1109/tbme.2012.2191783

    Article  Google Scholar 

  88. Stenzl A, Burger M, Fradet Y, Mynderse LA, Soloway MS, Witjes JA, Kriegmair M, Karl A, Shen Y, Grossman HB (2010) Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol 184(5):1907–1913. https://doi.org/10.1016/j.juro.2010.06.148

    Article  PubMed  PubMed Central  Google Scholar 

  89. Studer UE, Scherz S, Scheidegger J, Kraft R, Sonntag R, Ackermann D, Zingg EJ (1990) Enlargement of regional lymph nodes in renal cell carcinoma is often not due to metastases. J Urol 144(2 Pt 1):243–245

    Article  CAS  Google Scholar 

  90. Swinnen G, Maes A, Pottel H, Vanneste A, Billiet I, Lesage K, Werbrouck P (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57(4):641–647. https://doi.org/10.1016/j.eururo.2009.05.014

    Article  PubMed  Google Scholar 

  91. Thoeny HC, Froehlich JM, Triantafyllou M, Huesler J, Bains LJ, Vermathen P, Fleischmann A, Studer UE (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273(1):125–135. https://doi.org/10.1148/radiol.14132921

    Article  PubMed  Google Scholar 

  92. Tritschler S, Mosler C, Straub J, Buchner A, Karl A, Graser A, Stief C, Tilki D (2012) Staging of muscle-invasive bladder cancer: can computerized tomography help us to decide on local treatment? World J Urol 30(6):827–831. https://doi.org/10.1007/s00345-011-0817-6

    Article  PubMed  Google Scholar 

  93. Turney BW, Willatt JM, Nixon D, Crew JP, Cowan NC (2006) Computed tomography urography for diagnosing bladder cancer. BJU Int 98(2):345–348. https://doi.org/10.1111/j.1464-410X.2006.06216.x

    Article  PubMed  Google Scholar 

  94. Vendrell M, Maiti KK, Dhaliwal K, Chang YT (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31(4):249–257. https://doi.org/10.1016/j.tibtech.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  95. Wallace MB, Meining A, Canto MI, Fockens P, Miehlke S, Roesch T, Lightdale CJ, Pohl H, Carr-Locke D, Lohr M, Coron E, Filoche B, Giovannini M, Moreau J, Schmidt C, Kiesslich R (2010) The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther 31(5):548–552. https://doi.org/10.1111/j.1365-2036.2009.04207.x

    Article  CAS  PubMed  Google Scholar 

  96. Wang LJ, Wong YC, Ng KF, Chuang CK, Lee SY, Wan YL (2010) Tumor characteristics of urothelial carcinoma on multidetector computerized tomography urography. J Urol 183(6):2154–2160. https://doi.org/10.1016/j.juro.2010.02.028

    Article  PubMed  Google Scholar 

  97. Weerakkody D, Moshnikova A, Thakur MS, Moshnikova V, Daniels J, Engelman DM, Andreev OA, Reshetnyak YK (2013) Family of pH (low) insertion peptides for tumor targeting. Proc Natl Acad Sci USA 110(15):5834–5839. https://doi.org/10.1073/pnas.1303708110

    Article  CAS  PubMed  Google Scholar 

  98. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  Google Scholar 

  99. Wu K, Liu JJ, Adams W, Sonn GA, Mach KE, Pan Y, Beck AH, Jensen KC, Liao JC (2011) Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78(1):225–231. https://doi.org/10.1016/j.urology.2011.02.057

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xiong Y, Li J, Ma S, Ge J, Zhou L, Li D, Chen Q (2017) A meta-analysis of narrow band imaging for the diagnosis and therapeutic outcome of non-muscle invasive bladder cancer. PLoS ONE 12(2):e0170819. https://doi.org/10.1371/journal.pone.0170819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ye Z, Hu J, Song X, Li F, Zhao X, Chen S, Wang X, He D, Fan J, Ye D, Xing J, Pan T, Wang D (2015) A comparison of NBI and WLI cystoscopy in detecting non-muscle-invasive bladder cancer: A prospective, randomized and multi-center study. Sci Rep 5:10905. https://doi.org/10.1038/srep10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng C, Lv Y, Zhong Q, Wang R, Jiang Q (2012) Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int 110(11 Pt B):E680–687. https://doi.org/10.1111/j.1464-410x.2012.11500.x

    Article  Google Scholar 

  103. Zlatev DV, Altobelli E, Liao JC (2015) Advances in imaging technologies in the evaluation of high-grade bladder cancer. The Urol Clinics North Am 42(2):147–157, vii. https://doi.org/10.1016/j.ucl.2015.01.001

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dharati Trivedi for her helpful assistance with editing the figures. Bernhard Kiss was funded by Swiss National Foundation (P300 PB 167793/1) and Bern Cancer League. Gautier Marcq was funded by Lille 2 University mobility grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiss, B., Marcq, G., Liao, J.C. (2018). Optical and Cross-Sectional Imaging Technologies for Bladder Cancer. In: Daneshmand, S., Chan, K. (eds) Genitourinary Cancers . Cancer Treatment and Research, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-319-93339-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93339-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93338-2

  • Online ISBN: 978-3-319-93339-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics