Skip to main content

Renal Nerve Ablation

  • Chapter
  • 1358 Accesses

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

A sympathetic overdrive is central to the development and clinical course of heart failure. As the kidneys are significant modulators of sympathetic activity, renal nerve ablation (RNA) stands as an intriguing therapeutic option to control the progression and prognosis of the disease. A number of studies have provided evidence of an effect of RNA on blood pressure as well as on heart size and function. Experimental studies in heart failure models have shown that RNA interferes with water and salt retention, the renin-angiotensin axis, and the sympathetic overflow to the heart. A series of small studies of RNA in humans with heart failure have provided promising data with respect to functional status, neurohormonal activation, and clinical and prognostic biomarkers. As pending trials will provide data on the true efficacy of transcatheter RNA, the solid pathophysiologic basis supports the need for larger trials in heart failure patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AT1R:

Angiotensin II type 1 receptor

AT2R:

Angiotensin II type 2 receptor

BP:

Blood pressure

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

MSNA:

Muscle sympathetic nerve activity

NT-pro-BNP:

N-terminal pro-B-type natriuretic peptide

NYHA:

New York Heart Association

OMT:

Optimal medical therapy

RNA:

Renal nerve ablation

References

  1. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747–62.

    Article  CAS  Google Scholar 

  2. Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015;36(30):1974–82.

    Article  CAS  Google Scholar 

  3. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26(9):906–13.

    Article  Google Scholar 

  4. Hoobler SW, Manning JT, Paine WG, Mc CS, Helcher PO, Renfert H Jr, et al. The effects of splanchnicectomy on the blood pressure in hypertension; a controlled study. Circulation. 1951;4(2):173–83.

    Article  CAS  Google Scholar 

  5. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–e215.

    PubMed  Google Scholar 

  6. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  CAS  Google Scholar 

  7. Tsioufis C, Mahfoud F, Mancia G, Redon J, Damascelli B, Zeller T, et al. What the interventionalist should know about renal denervation in hypertensive patients: a position paper by the ESH WG on the interventional treatment of hypertension. EuroIntervention. 2014;9(9):1027–35.

    Article  Google Scholar 

  8. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  Google Scholar 

  9. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.

    Article  Google Scholar 

  10. Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9.

    Article  Google Scholar 

  11. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  Google Scholar 

  12. Tsioufis C, Dimitriadis K, Thomopoulos C, Doumas M, Papademetriou V, Stefanadis C. Renal and cardiac effects of renal sympathetic denervation and carotid baroreceptor stimulation. Curr Vasc Pharmacol. 2014;12(1):55–62.

    Article  CAS  Google Scholar 

  13. Tsioufis C, Dimitriadis K, Kasiakogias A, Kalos T, Liatakis I, Koutra E, et al. Effects of multielectrode renal denervation on elevated sympathetic nerve activity and insulin resistance in metabolic syndrome. J Hypertens. 2017;35(5):1100–8.

    Article  CAS  Google Scholar 

  14. Tsioufis C, Papademetriou V, Dimitriadis K, Tsiachris D, Thomopoulos C, Kasiakogias A, et al. Effects of multielectrode renal denervation on cardiac and neurohumoral adaptations in resistant hypertension with cardiac hypertrophy: an EnligHTN I substudy. J Hypertens. 2015;33(2):346–53.

    Article  CAS  Google Scholar 

  15. Schirmer SH, Sayed MM, Reil JC, Lavall D, Ukena C, Linz D, et al. Atrial Remodeling following catheter-based renal denervation occurs in a blood pressure- and heart rate-independent manner. JACC Cardiovasc Interv. 2015;8(7):972–80.

    Article  Google Scholar 

  16. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35(33):2224–31b.

    Article  Google Scholar 

  17. Villarreal D, Freeman RH, Johnson RA, Simmons JC. Effects of renal denervation on postprandial sodium excretion in experimental heart failure. Am J Phys. 1994;266(5 Pt 2):R1599–604.

    CAS  Google Scholar 

  18. Nozawa T, Igawa A, Fujii N, Kato B, Yoshida N, Asanoi H, et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessel. 2002;16(2):51–6.

    Article  Google Scholar 

  19. Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am J Physiol Renal Physiol. 2011;300(1):F31–9.

    Article  CAS  Google Scholar 

  20. Pinkham MI, Loftus MT, Amirapu S, Guild SJ, Quill G, Woodward WR, et al. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function. Am J Physiol Regul Integr Comp Physiol. 2017;312(3):R368–R79.

    Article  Google Scholar 

  21. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  Google Scholar 

  22. Pascual-Figal DA. Neprilysin and heart failure: a “sympathetic” relationship? J Am Coll Cardiol. 2017;70(17):2154–6.

    Article  Google Scholar 

  23. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  Google Scholar 

  24. Polhemus DJ, Trivedi RK, Gao J, Li Z, Scarborough AL, Goodchild TT, et al. Renal sympathetic denervation protects the failing heart via inhibition of Neprilysin activity in the kidney. J Am Coll Cardiol. 2017;70(17):2139–53.

    Article  Google Scholar 

  25. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    Article  Google Scholar 

  26. Tsioufis C, Iliakis P, Kasiakogias A, Konstantinidis D, Lovic D, Petras D, et al. Non-pharmacological modulation of the autonomic nervous system for heart failure treatment: where do we stand? Curr Vasc Pharmacol. 2017;16(1):30–43.

    PubMed  Google Scholar 

  27. Chen W, Ling Z, Xu Y, Liu Z, Su L, Du H, et al. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv. 2017;89(4):E153–E61.

    Article  Google Scholar 

  28. Gao JQ, Xie Y, Yang W, Zheng JP, Liu ZJ. Effects of percutaneous renal sympathetic denervation on cardiac function and exercise tolerance in patients with chronic heart failure. Rev Port Cardiol. 2017;36(1):45–51.

    Article  Google Scholar 

  29. Dai Q, Lu J, Wang B, Ma G. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure. Int J Clin Exp Med. 2015;8(6):9779–85.

    PubMed  PubMed Central  Google Scholar 

  30. Geng J, Chen C, Zhou X, Qian W, Shan Q. Influence of renal sympathetic denervation in patients with early-stage heart failure versus late-stage heart failure. Int Heart J. 2017;59(1):99–104.

    Article  Google Scholar 

  31. Hopper I, Gronda E, Hoppe UC, Rundqvist B, Marwick TH, Shetty S, et al. Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the symplicity HF feasibility study. J Card Fail. 2017;23(9):702–7.

    Article  Google Scholar 

  32. Tsioufis C, Georgiopoulos G, Oikonomou D, Thomopoulos C, Katsiki N, Kasiakogias A, et al. Hypertension and heart failure with preserved ejection fraction: connecting the dots. Curr Vasc Pharmacol. 2017;16(1):15–22.

    PubMed  Google Scholar 

  33. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  Google Scholar 

  34. Patel HC, Hayward C, Keegan J, Gatehouse PD, Rajani R, Khattar RS, et al. Effects of renal denervation on vascular remodelling in patients with heart failure and preserved ejection fraction: a randomised control trial. JRSM Cardiovasc Dis. 2017;6:2048004017690988.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Tsioufis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Tsioufis, K., Iliakis, P., Kasiakogias, A. (2019). Renal Nerve Ablation. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics