Skip to main content

Abstract

Even though heart failure (HF) is a global public health problem, its diagnosis is often quite challenging, especially in the initial stages. Biomarkers are useful instruments which could facilitate the early diagnosis and prompt therapy initiation in a patient-tailored manner. Substantial advancements have been made in recent years, so reasonably priced omics-based technologies have permitted on the dot identification of a wide array of biomarkers. But not all biomarkers can be used in clinics as these must be precise, sensitive, and specific for the pathology investigated. HF is characterized by a systemic inflammatory response, myocardial fibrosis, and increased myocyte stress leading to organ damage. In view of that, these biomarkers are categorized into markers related to fibrosis, inflammation, myocyte stress, and microRNAs. The validation of biomarkers is hindered by low statistical power and poor reproducibility of results. So, the quest to ascertain high-quality biomarkers having high accuracy and robustness has not yet come to an end, and further research in this field is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueland T, Gullestad L, Nymo SH, et al. Inflammatory cytokines as biomarkers in heart failure. Clin Chim Acta. 2015;443:71–7. https://doi.org/10.1016/j.cca.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBr PE, BLW. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327. https://doi.org/10.1161/cir.0b013e31829e8776.

    Article  PubMed  Google Scholar 

  3. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–61. https://doi.org/10.1161/CIR.0000000000000509.

    Article  PubMed  Google Scholar 

  4. Shah RV, Chen-Tournoux AA, Picard MH, et al. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2:311–9. https://doi.org/10.1161/CIRCHEARTFAILURE.108.833707.

    Article  CAS  PubMed  Google Scholar 

  5. Bayes-Genis A, Zhang Y, Ky B. ST2 and patient prognosis in chronic heart failure. Am J Cardiol. 2015;115:64B–9B. https://doi.org/10.1016/j.amjcard.2015.01.043.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y-C, Yu C-C, Chiu F-C, et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Card Fail. 2013;19:163–8. https://doi.org/10.1016/j.cardfail.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  7. Bartunek J, Delrue L, Van Durme F, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52:2166–74. https://doi.org/10.1016/j.jacc.2008.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carrasco-Sánchez FJ, Aramburu-Bodas O, Salamanca-Bautista P, et al. Predictive value of serum galectin-3 levels in patients with acute heart failure with preserved ejection fraction. Int J Cardiol. 2013;169:177–82. https://doi.org/10.1016/j.ijcard.2013.08.081.

    Article  PubMed  Google Scholar 

  9. Zile MR, Baicu CF, Ikonomidis J, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–59. https://doi.org/10.1161/CIRCULATIONAHA.114.013215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim H, Lee J, Hyun JW, Park JW, Joo HG, Shin T. Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int. 2007;31:655–62. https://doi.org/10.1016/J.CELLBI.2006.11.036.

    Article  CAS  PubMed  Google Scholar 

  11. Yao Y, Shen D, Chen R, et al. Galectin-3 predicts left ventricular remodeling of hypertension. J Clin Hypertens. 2016;18:506–11. https://doi.org/10.1111/jch.12757.

    Article  CAS  Google Scholar 

  12. de Boer RA, Voors AA, Muntendam P, et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–7. https://doi.org/10.1093/eurjhf/hfp097.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8. https://doi.org/10.1161/01.CIR.0000147181.65298.4D.

    Article  CAS  PubMed  Google Scholar 

  14. de Boer RA, Lok DJA, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43:60–8. https://doi.org/10.3109/07853890.2010.538080.

    Article  CAS  PubMed  Google Scholar 

  15. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56. https://doi.org/10.1016/j.jacc.2012.04.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Kimmenade RR, Januzzi JLJ, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24. https://doi.org/10.1016/j.jacc.2006.03.061.

    Article  CAS  PubMed  Google Scholar 

  17. Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95. https://doi.org/10.1161/CIRCULATIONAHA.106.638569.

    Article  PubMed  Google Scholar 

  18. Bielecka-Dabrowa A, Michalska-Kasiczak M, Gluba A, et al. Biomarkers and echocardiographic predictors of myocardial dysfunction in patients with hypertension. Sci Rep. 2015;5:8916. https://doi.org/10.1038/srep08916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Demir M, Acartürk E, Inal T, et al. Procollagen type I carboxy-terminal peptide shows left ventricular hypertrophy and diastolic dysfunction in hypertensive patients. Cardiovasc Pathol. 2007;16:69–74. https://doi.org/10.1016/j.carpath.2006.09.010.

    Article  CAS  PubMed  Google Scholar 

  20. Plaksej R, Kosmala W, Frantz S, et al. Relation of circulating markers of fibrosis and progression of left and right ventricular dysfunction in hypertensive patients with heart failure. J Hypertens. 2009;27:2483–91. https://doi.org/10.1097/HJH.0b013e3283316c4d.

    Article  CAS  PubMed  Google Scholar 

  21. Tang WH, Shrestha K, Troughton RW, et al. Integrating plasma high-sensitivity C-reactive protein and myeloperoxidase for risk prediction in chronic systolic heart failure. Congest Heart Fail. 2011;17:105–9. https://doi.org/10.1111/j.1751-7133.2011.00221.x.

    Article  CAS  PubMed  Google Scholar 

  22. Querejeta R, López B, González A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110:1263–8. https://doi.org/10.1161/01.CIR.0000140973.60992.9A.

    Article  CAS  PubMed  Google Scholar 

  23. Stakos DA, Tziakas DN, Chalikias GK, et al. Associations between collagen synthesis and degradation and aortic function in arterial hypertension. Am J Hypertens. 2010;23:488–94. https://doi.org/10.1038/ajh.2010.2.

    Article  CAS  PubMed  Google Scholar 

  24. Piotrowski G, Banach M, Gerdts E, et al. Left atrial size in hypertension and stroke. J Hypertens. 2011;29:1988–93. https://doi.org/10.1097/HJH.0b013e32834a98db.

    Article  CAS  PubMed  Google Scholar 

  25. González A, López B, Querejeta R, et al. Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension. 2010;55:1418–24. https://doi.org/10.1161/HYPERTENSIONAHA.109.149112.

    Article  CAS  PubMed  Google Scholar 

  26. Kuwahara F, Kai H, Tokuda K, et al. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension. 2004;43:739–45. https://doi.org/10.1161/01.HYP.0000118584.33350.7d.

    Article  CAS  PubMed  Google Scholar 

  27. Zile MR, DeSantis SM, Baicu CF, et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail. 2011;4:246–56. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tromp J, van der Pol A, Klip IT, et al. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail. 2014;7:457–62. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000846.

    Article  CAS  PubMed  Google Scholar 

  29. Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YH, Nijst P, Kiefer K, Tang WHW. Endothelial glycocalyx as biomarker for cardiovascular diseases: mechanistic and clinical implications. Curr Heart Fail Rep. 2017;14:117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johar D, Bernstein L. A targeted approach toward more accurate assessment of hypertension. Egypt J Chest Dis Tuberc. 2017;66:517–36. https://doi.org/10.1016/j.ejcdt.2017.01.002.

    Article  Google Scholar 

  32. Frangogiannis NG. Syndecan-1: a critical mediator in cardiac fibrosis. Hypertension. 2010;55:233–5.

    Article  CAS  PubMed  Google Scholar 

  33. Okuyan E, Uslu A, Çakar MA, et al. Homocysteine levels in patients with heart failure with preserved ejection fraction. Cardiology. 2010;117:21–7. https://doi.org/10.1159/000320106.

    Article  CAS  PubMed  Google Scholar 

  34. Song TT, Cui R, Guo QH, Jia HD, Liu L. The correlation and its significance of BNP, homocysteine and C-reactive protein level in elderly heart failure patients with preserved ventricular ejection fraction and hypertension. Labeled Immunoassays Clin Med. 2016;24:200–3. https://doi.org/10.11748/BJMY.ISSN.1006-1703.2017.02.019.

  35. Joseph J, Washington A, Joseph L, et al. Hyperhomocysteinemia leads to adverse cardiac remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol. 2002;283:H2567–74. https://doi.org/10.1152/ajpheart.00475.2002.

    Article  CAS  PubMed  Google Scholar 

  36. Joseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients. 2013;5:3235–56. https://doi.org/10.3390/nu5083235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gibelin P, Serre S, Candito M, et al. Prognostic value of homocysteinemia in patients with congestive heart failure. Clin Chem Lab Med. 2006;44:813–6.

    Article  CAS  PubMed  Google Scholar 

  38. Takeishi Y, Niizeki T, Arimoto T, et al. Serum resistin is associated with high risk in patients with congestive heart failure—a novel link between metabolic signals and heart failure. Circ J. 2007;71:460–4. https://doi.org/10.1253/circj.71.460.

    Article  CAS  PubMed  Google Scholar 

  39. Papadopoulos DP, Perrea D, Thomopoulos C, et al. Masked hypertension and atherogenesis: the impact on adiponectin and resistin plasma levels. J Clin Hypertens. 2009;11:61–5. https://doi.org/10.1111/j.1751-7176.2008.00070.x.

    Article  CAS  Google Scholar 

  40. Ravassa S, Beloqui O, Varo N, et al. Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. J Hypertens. 2013;31:1. https://doi.org/10.1097/HJH.0b013e32835ca903.

    Article  CAS  Google Scholar 

  41. Song K, Wang S, Huang B, et al. Plasma cardiotrophin-1 levels are associated with hypertensive heart disease: a meta-analysis. J Clin Hypertens. 2014;16:686–92. https://doi.org/10.1111/jch.12376.

    Article  CAS  Google Scholar 

  42. Cesari M, Penninx BWJH, Newman AB, et al. Inflammatory markers and onset of cardiovascular events: results from the health ABC study. Circulation. 2003;108:2317–22. https://doi.org/10.1161/01.CIR.0000097109.90783.FC.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto M, Tsujino T, Lee-Kawabata M, et al. Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction. Cytokine. 2010;49:264–8. https://doi.org/10.1016/j.cyto.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  44. Navarro-González JF, Mora C, Muros M, et al. Association of tumor necrosis factor-alpha with early target organ damage in newly diagnosed patients with essential hypertension. J Hypertens. 2008;26:2168–75. https://doi.org/10.1097/HJH.0b013e32830e2545.

    Article  CAS  PubMed  Google Scholar 

  45. Dunlay SM, Weston SA, Redfield MM, et al. Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation. 2008;118:625–31. https://doi.org/10.1161/CIRCULATIONAHA.107.759191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luft FC. Angiotensin, inflammation, hypertension, and cardiovascular disease. Curr Hypertens Rep. 2001;3:61–7.

    Article  CAS  PubMed  Google Scholar 

  47. Collier P, Watson CJ, Voon V, et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? Eur J Heart Fail. 2011;13:1087–95. https://doi.org/10.1093/eurjhf/hfr079.

    Article  CAS  PubMed  Google Scholar 

  48. Trojnarska O, Gwizdała A, Katarzyński S, et al. Evaluation of exercise capacity with cardiopulmonary exercise testing and BNP levels in adult patients with single or systemic right ventricles. Arch Med Sci. 2010;6:192–7. https://doi.org/10.5114/aoms.2010.13893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xue H, Fu Z, Chen Y, et al. The association of growth differentiation factor-15 with left ventricular hypertrophy in hypertensive patients. PLoS One. 2012;7:e46534. https://doi.org/10.1371/journal.pone.0046534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kouris NT, Zacharos ID, Kontogianni DD, et al. The significance of CA125 levels in patients with chronic congestive heart failure. Correlation with clinical and echocardiographic parameters. Eur J Heart Fail. 2005;7:199–203. https://doi.org/10.1016/j.ejheart.2004.07.015.

    Article  CAS  PubMed  Google Scholar 

  51. Hung C-L, Hung T-C, Liu C-C, et al. Relation of carbohydrate antigen-125 to left atrial remodeling and its prognostic usefulness in patients with heart failure and preserved left ventricular ejection fraction in women. Am J Cardiol. 2012;110:993–1000. https://doi.org/10.1016/j.amjcard.2012.05.030.

    Article  CAS  PubMed  Google Scholar 

  52. Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11:191–7. https://doi.org/10.1093/eurjhf/hfn036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sawada Y, Suda M, Yokoyama H, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J Biol Chem. 1997;272:20545–54. https://doi.org/10.1074/jbc.272.33.20545.

    Article  CAS  PubMed  Google Scholar 

  54. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A. 2000;97:8525–9. https://doi.org/10.1073/pnas.150149097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mottram PM, Leano R, Marwick TH. Usefulness of B-type natriuretic peptide in hypertensive patients with exertional dyspnea and normal left ventricular ejection fraction and correlation with new echocardiographic indexes of systolic and diastolic function. Am J Cardiol. 2003;92:1434–8.

    Article  CAS  PubMed  Google Scholar 

  56. Tschöpe C, Kašner M, Westermann D, et al. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J. 2005;26:2277–84. https://doi.org/10.1093/eurheartj/ehi406.

    Article  CAS  PubMed  Google Scholar 

  57. Gluba A, Bielecka A, Mikhailidis DP, et al. An update on biomarkers of heart failure in hypertensive patients. J Hypertens. 2012;30:1681–9. https://doi.org/10.1097/HJH.0b013e3283569a9c.

    Article  CAS  PubMed  Google Scholar 

  58. Almeida P, Azevedo A, Rodrigues R, et al. B-type natriuretic peptide and left ventricular hypertrophy in hypertensive patients. Rev Port Cardiol. 2003;22:327–36.

    PubMed  Google Scholar 

  59. Nishikimi T, Morimoto A, Ishikawa K, et al. Different secretion patterns of adrenomedullin, brain natriuretic peptide, and atrial natriuretic peptide during exercise in hypertensive and normotensive subjects. Clin Exp Hypertens. 1997;19:503–18.

    Article  CAS  PubMed  Google Scholar 

  60. Ishimitsu T, Nishikimi T, Saito Y, et al. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J Clin Invest. 1994;94:2158–61. https://doi.org/10.1172/JCI117573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pousset F, Masson F, Chavirovskaia O, et al. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur Heart J. 2000;21:1009–14. https://doi.org/10.1053/euhj.1999.1904.

    Article  CAS  PubMed  Google Scholar 

  62. Yu CM, Cheung BM, Leung R, et al. Increase in plasma adrenomedullin in patients with heart failure characterised by diastolic dysfunction. Heart. 2001;86:155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xue Y, Taub P, Iqbal N, et al. Elevated mid-region pro-adrenomedullin is associated with increased mortality in stable outpatients with diastolic dysfunction. J Card Fail. 2011;17:S3. https://doi.org/10.1016/j.cardfail.2011.06.010.

    Article  Google Scholar 

  64. Gottsäter M, Ford LB, Östling G, et al. Adrenomedullin is a marker of carotid plaques and intima–media thickness as well as brachial pulse pressure. J Hypertens. 2013;31:1959–65. https://doi.org/10.1097/HJH.0b013e328362fe99.

    Article  CAS  PubMed  Google Scholar 

  65. Ertmer C, Van Aken H, Westphal M. Adrenomedullin in the treatment of cardiovascular dysfunction and sepsis. In: Intensive care medicine.Yearbook of Intensive Care and Emergency Medicine. Springer: Berlin, Heidelberg. 2007;2007:81–95.

    Google Scholar 

  66. Watson CJ, Gupta SK, O’Connell E, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17:405–15. https://doi.org/10.1002/ejhf.244.

    Article  CAS  PubMed  Google Scholar 

  67. Dong S, Ma W, Hao B, et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol. 2014;7(2):565–74.

    PubMed  PubMed Central  Google Scholar 

  68. Marketou M, Kontaraki J, Parthenakis F, et al. MicroRNA-21 and microRNA-133 levels in peripheral blood mononuclear cells are associated with functional capacity in patients with heart failure with preserved ejection fraction. Eur Heart J. 2016;37:723–4. https://doi.org/10.1093/eurheartj/ehw433.

    Article  Google Scholar 

  69. Manzano-Fernndez S, Mueller T, Pascual-Figal D, et al. Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am J Cardiol. 2011;107:259–67. https://doi.org/10.1016/j.amjcard.2010.09.011.

    Article  CAS  Google Scholar 

  70. Bošnjak I, Selthofer-Relatić K, Včev A. Prognostic value of galectin-3 in patients with heart failure. Dis Markers. 2015;2015:690205. https://doi.org/10.1155/2015/690205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011;4:561–8. https://doi.org/10.1161/CIRCHEARTFAILURE.110.960716.

    Article  CAS  PubMed  Google Scholar 

  72. Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation. 2006;113:2089–96. https://doi.org/10.1161/CIRCULATIONAHA.105.573865.

    Article  CAS  PubMed  Google Scholar 

  73. Maisel A, Barnard D, Jaski B, et al. Primary results of the HABIT trial (heart failure assessment with BNP in the home). J Am Coll Cardiol. 2013;61:1726–35. https://doi.org/10.1016/j.jacc.2013.01.052.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Funding: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI—UEFISCDI, project number PN-III-P2-2.1-PED-2016-1333, within PNCDI III.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Dorobantu, M., Micheu, M.M. (2019). Biomarkers. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics