Skip to main content

Microbial and Viral Loop in Alte Donau: A Case Study

  • Chapter
  • First Online:
Book cover The Alte Donau: Successful Restoration and Sustainable Management

Part of the book series: Aquatic Ecology Series ((AQEC,volume 10))

  • 330 Accesses

Abstract

Attempting to describe the magnitude of the microbial carbon fluxes in the water column of the Alte Donau we monitored basic parameters concerning viruses, bacteria, and flagellates. Assuming a bacterial carbon conversion efficiency of 31% and bacterial production of 2.56 μg C L−1 h−1 for the period from April to September, the bacterial carbon demand would correspond to 8.26 μg C L−1 h−1, which ought to be covered by primary production. For January to March and October to December, we calculated a mean bacterial carbon demand of 3.06 μg C L−1 h−1 and 3.48 μg C L−1 h−1 respectively. The balance calculations indicate that heterotrophic bacteria would consume not all of the photosynthetically reduced carbon. Despite a positive C-balance in the water column its worthwhile mentioning that benthic bacterial production needs to be considered before balance calculations are forwarded for this ecosystem. The abundance of heterotrophic nanoflagellates (HNF) and the high ratios of bacterial to HNF abundance (B:HNF range: 2 × 103 to 9 × 103, mean: 5.4 × 103) indicated a low bacterivorous impact by HNF. Calculated ingestion rates were 2.2–26.5 bacteria HNF−1h−1 with a mean of 7.5 HNF−1h−1. Grazing rates comprised between 0.3 and 20% of bacterial production, with a mean of 5%. Virus-to-bacteria ratio (VBR) ranged from 4 in July to 39 in February, with an average of 19. Viruses <60 nm capsid diameter dominated over all seasons accounting for some 74% of the total, determined by transmission electron microscope (TEM). To estimate the virus induced control of bacterial production the number of lysed bacteria was obtained by dividing viral decay rates by the maximum burst size. On average 3.0 × 104 bacterial cells ml−1 h−1 had to be lysed to maintain the monitored viral production implying that viruses controlled on average 56% of the bacterial production, ranging from 42 to 88%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amy PS, Morita RY (1983) Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl Environ Microbiol 45:1109–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bell RT, Ahlgren GM, Ahlgren I (1983) Estimating bacterioplankton production by measuring 3H-thymidine incorporation in a eutrophic Swedish lake. Appl Environ Microbiol 45:1709–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binder B (1999) Reconsidering the relationship between virally induced bacterial mortality and frequency of infected cells. Aquat Microb Ecol 18:207–215

    Article  Google Scholar 

  • Boon PI (1991) Bacterial assemblages in rivers and billabongs of southeastern Australia. Microb Ecol 22:27–52

    Article  CAS  Google Scholar 

  • Børsheim KY (1993) Native marine bacteriophages. FEMS Microbial Ecol 102:141–159

    Article  Google Scholar 

  • Bratbak G, Heldal M, Norland S, Thingstad TF (1990) Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol 56:1400–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bratbak G, Thingstad TF, Heldal M (1994) Viruses and the microbial loop. Microb Ecol 28:209–211

    Article  CAS  Google Scholar 

  • Carrick HJ, Fahnenstiel GL, Taylo WD (1992) Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vitro comparisons and importance to food web dynamics. Limnol Oceanogr 37:1221–1235

    Article  Google Scholar 

  • Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441–443

    Article  CAS  Google Scholar 

  • Cleven E-J (1996) Indirectly fluorescently labelled flagellates (IFLF): a tool to estimate the predation on free-living heterotrophic flagellates. J Plankton Res 18:429–442

    Article  Google Scholar 

  • Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Fischer UR, Velimirov B (2002) High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol 27:1–12

    Article  Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66:109–120

    Article  Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242

    Article  Google Scholar 

  • Fuhrman JA, Suttle CA (1993) Viruses in marine planktonic systems. Limnol Oceanogr 6:51–63

    Google Scholar 

  • Fuhrman JA, Eppley RW, Hagström A, Azam F (1985) Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar Ecol Prog Ser 27:9–20

    Article  Google Scholar 

  • Gajewski AJ, Chrost RJ, Siuda W (1993) Bacterial lipolytic activity in a eutrophic lake. Arch Hydrobiol 128:107–126

    Google Scholar 

  • Gasol JM (1994) A framework for the assessment of top-down versus bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113:291–300

    Article  Google Scholar 

  • Gasol JM, Vaqué D (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnol Oceanogr 38:657–665

    Article  Google Scholar 

  • Gasol JM, Simon AM, Kalff J (1995) Patterns in top-down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. J Plankton Res 17:1879–1903

    Article  Google Scholar 

  • Gonzalez JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10

    Article  Google Scholar 

  • Hansen B, Christoffersen K (1995) Specific growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J Plankton Res 17:413–430

    Article  Google Scholar 

  • Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–212

    Article  Google Scholar 

  • Hennes KP, Simon M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microbiol 61:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jürgens K, Wickham SA, Rothhaupt KO, Santer B (1996) Feeding rates of macro- and mircozooplankton on heterotrophic microflagellates. Limnol Oceanogr 41:1833–1839

    Article  Google Scholar 

  • Kirschner AKT, Velimirov B (1997) A seasonal study of bacterial community succession in a temperate backwater system, indicated by variation in morphotype numbers, biomass and secondary production. Microb Ecol 34:27–38

    Article  CAS  Google Scholar 

  • Kirschner AKT, Ulbricht T, Steitz A, Velimirov B (1998) Material fluxes through the procaryotic compartment of a eutrophic backwater creek of the river Danube. Aquat Microb Ecol 17:211–230

    Article  Google Scholar 

  • Kristiansen K, Nielsen H, Rieman H, Fuhrman JA (1992) Growth efficiencies of freshwater bacterioplankton. Microb Ecol 24:145–160

    Article  CAS  Google Scholar 

  • Mathias CB, Kirschner AKT, Velimirov B (1995) Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River. Appl Environ Microbiol 61:3734–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Münster U (1991) Extracellular enzyme activity in eutrophic and polyhumic lakes. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 96–122

    Chapter  Google Scholar 

  • Nagata T (1988) The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol Oceanogr 33:504–517

    Article  Google Scholar 

  • Pace ML, Vaqué D (1994) The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes. Limnol Oceanogr 39:985–996

    Article  Google Scholar 

  • Pedros-Alio C, Brock TD (1982) Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Appl Environ Microbiol 44:203–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler J, Šimek K, Sattler B, Schwarzenbacher A, Bobkova J, Psenner R (1996) Sort-term changes of protozoan control on autotrophic picoplankton in an oligotrophic lake. J Plankton Res 18:443–462

    Article  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web: a changing paradigm. Bioscience 24(9):499–504

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62

    Article  Google Scholar 

  • Proctor LM, Okubo A, Fuhrman JA (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25:161–182

    Article  CAS  Google Scholar 

  • Sanders RW, Porter KG, Benett SJ, DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687

    Article  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labelled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr BF, Sherr EB, Pedros-Alio C (1989) Simultaneous measurements of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser 54:209–219

    Article  Google Scholar 

  • Šimek K, Straškrabová V (1992) Bacterioplankton production and protozoan bacterivory in a mesotrophic reservoir. J Plankton Res 14:773–787

    Article  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic bacteria. Mar Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28:237–243

    Article  CAS  Google Scholar 

  • Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48(3):1141–1149

    Article  CAS  Google Scholar 

  • Vaqué D, Pace ML (1992) Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure. J Plankton Res 14:307–321

    Article  Google Scholar 

  • Weisse T (1991) The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J Plankton Res 13:167–185

    Article  Google Scholar 

  • Weisse T (1997) Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J Plankton Res 19:703–722

    Article  Google Scholar 

  • Wieltschnig C, Wihlidal P, Ulbricht T, Kirschner AKT, Velimirov B (1999) Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment. Aquat Microb Ecol 17:77–89

    Article  Google Scholar 

  • Wieltschnig C, Kirschner AKT, Steitz A, Velimirov B (2001) Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microb Ecol 42:159–167

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Velimirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velimirov, B., Fischer, U.R., Kirschner, A.K.T., Wieltschnig, C. (2018). Microbial and Viral Loop in Alte Donau: A Case Study. In: Dokulil, M., Donabaum, K., Teubner, K. (eds) The Alte Donau: Successful Restoration and Sustainable Management. Aquatic Ecology Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-93270-5_13

Download citation

Publish with us

Policies and ethics