Skip to main content

Thermal Imaging and Infrared Sensing in Plant Ecophysiology

  • Chapter
  • First Online:

Abstract

This chapter outlines the potential of thermal sensing as a tool for plant ecophysiological studies and provides a summary of the key biophysical equations involved in the use of thermal sensing for the study of plant water relations. Particular emphasis is placed on the precautions that need to be adopted for high precision applications. The use of reference ‘mimic’ surfaces for improved estimation of stomatal conductance and evapotranspiration is outlined, and some of the precautions necessary for accurate work are described. Not only are recent applications reviewed, but some additional opportunities for use of the technique are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts R, November E, Behailu M, Deckers J, Muys B (2004) Ecosystem thermal buffer capacity as an indicator of the restoration status of protected areas in the northern Ethiopian highlands. Restor Ecol 12:586–596

    Article  Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – model. J Irrig Drain Eng 133:380–394

    Article  Google Scholar 

  • Baranowski P, Lipecki J, Mazurek W, Walczak RT (2008) Detection of watercore in ‘Gloster’ apples using thermography. Postharvest Biol Technol 47:358–366

    Article  Google Scholar 

  • Baranowski P, Mazurek W, Walczak W, Slawinski C (2009) Detection of early apple bruises using pulsed-phase thermography. Postharvest Biol Technol 53:91–100

    Article  Google Scholar 

  • Bastiaanssen WGM, Menentia M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Menentia M, Feddes RA, Holtslag AAM (1998b) A remote sensing surface energy balance algorithm for land (SEBAL) – 2. Validation. J Hydrol 213:213–229

    Article  Google Scholar 

  • Bendoricchio G, Jørgensen SE (1997) Exergy as goal function of ecosystems dynamic. Ecol Model 102:5–15

    Article  CAS  Google Scholar 

  • Ben-Gal A, Agam N, Alchanatis V, Cohen Y, Yermiyahu U, Zipori I, Presnov E, Sprintsin M, Dag A (2009) Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrig Sci 27:367–376

    Article  Google Scholar 

  • Bermadinger-Stebentheiner E, Stabentheiner A (1995) Dynamics of thermogenesis and structure of epidermal tiussues in inflorescences of Arum maculatum. New Phytol 131:41–50

    Article  Google Scholar 

  • Brenner AJ, Jarvis PG (1995) A heated leaf replica technique for determination of leaf boundary layer conductance in the field. Agric For Meteorol 72:261–275

    Article  Google Scholar 

  • Brough DW, Jones HG, Grace J (1986) Diurnal changes in water content of the stems of apple trees, as influenced by irrigation. Plant Cell Environ 9:1–7

    Google Scholar 

  • Bryant RB, Moran MS (1999) Determining crop water stress from crop canopy temperature variability. ERIM International, Ann Arbor

    Google Scholar 

  • Carter J, Brennan R, Wisniewski M (2001) Patterns of ice formation and movement in blackcurrant. HortSci 36:1027–1032

    Google Scholar 

  • Chaerle L, Van Der Straeten D (2001) Seeing is believing: imaging techniques to monitor plant health. Biochim Biophys Acta-Gene Struct Express 1519:153–166

    Article  CAS  Google Scholar 

  • Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D (1999) Presymptomatic visulaization of plant-virus interactions by thermography. Nat Biotechnol 17:813–816

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    Article  CAS  PubMed  Google Scholar 

  • Dietrich L, Korner C (2014) Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alpine Bot 124:27–35

    Article  Google Scholar 

  • Fuchs M (1990) Infrared measurement of canopy temperature and detection of plant water stress. Theor Appl Climatol 42:253–261

    Article  Google Scholar 

  • Fuchs M, Tanner CB (1966) Infrared thermometry of vegetation. Agron J 58:597–601

    Article  Google Scholar 

  • Fuentes S, De Bei R, Pech J, Tyerman S (2012) Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig Sci 30:523–536

    Article  Google Scholar 

  • Fuller MP, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Thermal Biol 23:81–89

    Article  Google Scholar 

  • Gardner BR, Blad BL, Watts DG (1981) Plant and air temperature in differentially irrigated corn. Agric Meteorol 25:201–207

    Article  Google Scholar 

  • Grant OM, Tronina L, Jones HG, Chaves MM (2007) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825

    Article  CAS  PubMed  Google Scholar 

  • Grant OM, Ochagavía H, Baluja J, Diago MP, Tardáguila J (2016) Thermal imaging to detect spatial and temporal variation in the water status of grapevine (Vitis vinifera L.). J Hort Sci Biotech 91:44–55

    Google Scholar 

  • Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148:1908–1912

    Article  Google Scholar 

  • Hamed F, Fuller MP, Telli G (2000) The pattern of freezing of grapevine shoots during early bud growth. Cryo-Lett 21:255–260

    CAS  Google Scholar 

  • Idso SB (1982) Non-water-stressed baselines - a key to measuring and interpreting plant water-stress. Agric Meteorol 27:59–70

    Article  Google Scholar 

  • Irmak S, Dorota ZH, Bastug R (2000) Determination of crop water stress index for irrigation timing and yield estimation of corn. Agron J 92:1221–1227

    Article  Google Scholar 

  • Jackson RD, Reginato RJ, Idso SB (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resour Res 13:651–656

    Article  Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ Jr (1981) Canopy temperature as a crop water-stress indicator. Water Resour Res 17:1133–1138

    Article  Google Scholar 

  • Jones HG (1999a) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric Forest Meteorol 95:139–149

    Article  Google Scholar 

  • Jones HG (1999b) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055

    Article  Google Scholar 

  • Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163

    Article  Google Scholar 

  • Jones HG (2014) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, Oxford

    Google Scholar 

  • Jones HG, Aikman D, McBurney TA (1997) Improvements to infra-red thermometry for irrigation scheduling. Acta Hort 449:259–266

    Article  Google Scholar 

  • Jones HG, Stoll M, Santos T, de Sousa C, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53:2249–2260

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong LH, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  Google Scholar 

  • Jones HG, Hutchinson PA, May T, Jamali H, Deery DM (2017) A practical method using a network of fixed infrared sensors for estimating crop canopy conductance and evaporation rate. Biosyst Eng 165:59–69

    Article  Google Scholar 

  • Keener ME, Kircher PL (1983) The use of canopy temperature as an indicator of drought stress in humid regions. Agric Meteorol 28:339–349

    Article  Google Scholar 

  • Kustas WP (1990) Estimates of evapotranspiration with one- and two-layer model of heat transfer over partial land cover. J Appl Meteorol 29:704–715

    Article  Google Scholar 

  • Kustas WP, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149:2071–2081

    Article  Google Scholar 

  • Lamprecht I, Schmolz E, Blanco L, Romero CM (2002) Flower ovens: thermal investigations on heat producing plants. Thermochim Acta 391:107–118

    Article  CAS  Google Scholar 

  • Lamprecht I, Maierhofer C, Röllig M (2006) A thermographic promenade through the Berlin Botanic Garden. Thermochim Acta 446:4–10

    Article  CAS  Google Scholar 

  • Leigh A, Close JD, Ball MC, Siebke K, Nicotra AB (2006) Light cooling curves: measuring leaf temperature in sunlight. Funct Plant Biol 33:515–519

    Article  Google Scholar 

  • Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Leinonen I, Grant OM, Tagliavia CP, Chaves MM, Jones HG (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Leuzinger S, Körner C (2007) Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric For Meteorol 146:29–37

    Article  Google Scholar 

  • Lindenthal M, Steiner U, Dehne H-W, Oerke E-C (2005) Effect of downy mildew development on transpiration of cucumber leaves visualised by digital infrared thermography. Phytopathology 95:233–240

    Article  PubMed  Google Scholar 

  • Maes WH, Steppe K (2012) Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J Exp Bot 63:4671–4712

    Article  CAS  PubMed  Google Scholar 

  • Maes WH, Baert A, Steppe K, Huete AR, Minchin PEH, Snelgar WP (2016) A new wet reference target method for continuous infraredthermography of vegetations. Agric For Meteorol 226:119–131

    Article  Google Scholar 

  • McNaughton KG, Jarvis PG (1983) Predicting the effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficits and plant growth. Academic, New York, pp 1–47

    Google Scholar 

  • Meron M, Alchanatis V, Cohen Y, Tsipris J, Orlov V (2010) Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Precis Agric 11:148–162

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (2008) Principles of environmental physics, 3rd edn. Academic, Burlington

    Google Scholar 

  • Qiu G-Y, Yano T, Momii K (1996) Estimation of plant transpiration by imitation leaf temperature – application of imitation leaf temperature for detection of crop water stress (II). Trans JSIDRE 185:43–49

    Google Scholar 

  • Raschke K (1956) Über die physikalischen Beziehungen zwischen Wärmeübergangszahl, Strahlungsaustausch, Temperatur und transpiration eines Blattes [The physical relationships between heat-transfer coefficients, radiation exchange, temperature and transpiration of a leaf.]. Planta 48:200–238

    Article  Google Scholar 

  • Raschke K (1960) Heat transfer between the plant and the environment. Annu Rev Plant Physiol 11:111–126

    Article  Google Scholar 

  • Skubatz H, Nelson TA, Meeuse BJ, Bendich AJ (1991) Heat production in the Voodoo lily (Sauromatum guttatum) as monitored by infrared thermography. Plant Physiol 95:1084–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrino JA, Gómez M, Jiménez-Muñoz JC, Olioso A (2007) Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sens Environ 110:139–148

    Article  Google Scholar 

  • Stier JC, Filiault DL, Wisniewski M, Palta JP (2003) Visualization of freezing progression in turfgrasses using infrared video thermography. Crop Sci 43:415–420

    Article  Google Scholar 

  • Stoll M, Schultz HR, Baecker G, Berkelmann-Loehnertz B (2008) Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis Agric 9:407–417

    Article  Google Scholar 

  • Tanner CB (1963) Plant temperatures. Agron J 55:210–211

    Article  Google Scholar 

  • Veroustraete F, Li Q, Verstraeten WW, Chen X, Bao A, Dong Q, Liu T, Willems P (2012) Soil moisture content retrieval based on apparent thermal inertia for Xinjiang province in China. Int J Remote Sens 33:3870–3885

    Article  Google Scholar 

  • Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens Environ 101:299–314

    Article  Google Scholar 

  • Zhang D, Zhou G (2016) Estimation of soil moisture from optical and thermal remote sensing: a review. Sensors 16:1308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamlyn G. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, H.G. (2018). Thermal Imaging and Infrared Sensing in Plant Ecophysiology. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_8

Download citation

Publish with us

Policies and ethics