Skip to main content

Root Morphology

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Root system defined as the “Hidden Half” of plant, has not attracted a great deal of attention for a long time from plant biologists. In recent years, through the new innovative techniques, root system has been deeply studied allowing all to reveal its structure, function, but also its genetic potential, which could be manipulated to improve crop yield and plant survival in stressful environments. Plant root system has three major functions: site of water and nutrients acquisition from the soil, essential support for plant anchoring and sensor of abiotic and biotic stresses. It also points out secondary functions such as photoassimilates storage, phytohormones synthesis and clonal propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abenavoli MR, Leone M, Sunseri F, Bacchi M, Sorgonà A (2016) Root phenotyping for drought tolerance in bean landraces from Calabria (Italy). J Agric Crop Sci 202:1–12

    Article  Google Scholar 

  • Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, Dupuy LX (2014) A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. J Exp Bot 65:2039–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsenault JL, Pouleur S, Messier C, Guay R (1995) WinRhizo, a root measuring system with a unique overlap correction method. Hortic Sci 30:906

    Google Scholar 

  • Berntson GM (1994) Root systems and fractals: how reliable are calculations of fractal dimension? Ann Bot 73:281–284

    Article  Google Scholar 

  • Costa C, Dwyer LM, Dutilleul P, Foroutan-pour K, Liu A, Hamel C, Smith DL (2003) Morphology and fractal dimension of root systems of maize hybrids bearing the leafy trait. Can J Bot 81:706–713

    Article  Google Scholar 

  • Danjon F, Sinoquet H, Godin C, Colin F, Drexhage M (1999) Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil 211:241–258

    Article  CAS  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361

    Article  PubMed  Google Scholar 

  • Eghball B, Settimi JR, Maranville JW, Parkhurst AM (1993) Fractal analysis for morphological description of corn roots under nitrogen stress. Agron J 85:287–289

    Article  CAS  Google Scholar 

  • Eshel A (1998) On the fractal dimensions of a root system. Plant Cell Environ 21:247–251

    Article  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell Scientific, Oxford, pp 229–243

    Google Scholar 

  • Fitter AH (1996) Characteristics and functions of root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Fitter AH, Stickland TR (1992) Fractal characterization of root system architecture. Funct Ecol 6:632–635

    Article  Google Scholar 

  • Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Hagrey SA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854

    Article  CAS  Google Scholar 

  • Hargreaves C, Gregory P, Bengough A (2009) Measuring root traits in barley (Hordeum vulgare ssp. vulgare and ssp. spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil 316:285–297

    Article  CAS  Google Scholar 

  • Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays L.) reveals root-type specific developmental programmes. Ann Bot 93:359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruska J, Cermak J, Sustek S (1999) Mapping of tree root systems by means of the ground penetrating radar. Tree Physiol 19:125–130

    Article  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Yueling H, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Buhler J, Minwuyelet S, Blumler P, Temperton VM, Hombach T, Streun M (2009) Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  • Le Marie C, Kirchgessner N, Marschall D, Walter A, Hund A (2014) Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis. Plant Methods 10:10–13

    Article  Google Scholar 

  • Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Nielsen KL (1996) Simulation of root system architecture. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots, the hidden half. Marcel Dekker, New York, pp 247–257

    Google Scholar 

  • Lynch JP, van Beem JJ (1993) Growth and architecture of seedling root of common bean genotypes. Crop Sci 33:1253–1257

    Article  Google Scholar 

  • Malamy JE (2009) Lateral root formation. In: Beeckman T (ed) Root development. Wiley Online Library, pp 83–126

    Google Scholar 

  • Muday GK, Rahman A (2007) Auxin transport and the integration of gravitropic growth. In: Gilroy S, Masson P (eds) Plant tropisms. Blackwell Publishing, Oxford, pp 47–78

    Chapter  Google Scholar 

  • Newman EI, Andrews RE (1973) Uptake of phosphorus and potassium in relation to root growth and root density. Plant Soil 38:49–69

    Article  CAS  Google Scholar 

  • Nibau C, Gibbs D, Coates J (2008) Branching out in new directions: the control of root architecture by lateral root formation. New Phytol 179:595–614

    Article  CAS  PubMed  Google Scholar 

  • Oppelt AL, Kurth W, Dzierzon H, Jentschke G, Godbold DL (2000) Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Ann For Sci 57:463–475

    Article  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Ryser P (1998) Intra- and interspecific variation in root length, root turn-over and the underlying parameters. In: Lambers H, Poorter H, MMI VV (eds) Inherent variation in plant growth. Physiological mechanism and ecological consequences. Backhuys, Leiden, pp 441–465

    Google Scholar 

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265

    Article  CAS  Google Scholar 

  • Sorgonà A, Cacco G (2002) Linking the physiological parameters of nitrate uptake with root morphology and topology in wheat (Triticum durum Desf.) and in citrus rootstock (Citrus volkameriana Ten & Pasq). Can J Bot 80:494–503

    Article  Google Scholar 

  • Sorgonà A, Abenavoli MR, Cacco G (2005) A comparative study between two citrus rootstocks: effect of nitrate on the root morpho-topology and net nitrate uptake. Plant Soil 270:257–267

    Article  CAS  Google Scholar 

  • Sorgonà A, Abenavoli MR, Gringeri PG, Cacco G (2007a) Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels. Ann Bot 100:1287–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorgonà A, Abenavoli MR, Gringeri PG, Lupini A, Cacco G (2007b) Root architecture plasticity of citrus rootstocks in response to nitrate availability. J Plant Nutr 30:1921–1932

    Article  CAS  Google Scholar 

  • Tatsumi J (2001) Fractal geometry of root system morphology: fractal dimension and multifractals. In: Proceedings 6th symposium international society root research, Nagoya, Japan, pp 24–25

    Google Scholar 

  • Tracy SR, Roberts JA, Black CR, McNeill A, Davidson R, Mooney SJ (2010) The X-factor: visualizing undisturbed root architecture in soils using X-ray computed tomography. J Exp Bot 61:311–313

    Article  CAS  PubMed  Google Scholar 

  • Wahl S, Ryser P (2000) Root tissue structure is linked to ecological strategies of grasses. New Phytol 148:459–471

    Article  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walk TC, Van Erp E, Lynch JP (2004) Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann Bot 94:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Siopongco J, Wade LJ, Yamauchi A (2009) Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot 65:338–344

    Article  Google Scholar 

  • Zhou XC, Luo XW (2009) Advances in non-destructive measurement and 3D visualization methods for plant root based on machine vision. In: Proceedings of the 2nd international conference on biomedical engineering and informatics. Tianjin, BMEI’09, pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosa Abenavoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lupini, A. et al. (2018). Root Morphology. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_2

Download citation

Publish with us

Policies and ethics