Skip to main content

Assessment and Improvement

  • Chapter
  • First Online:
Book cover Sustainable Solid Waste Collection and Management

Abstract

Today’s environmental concerns are related to the population and its consumption of resources, which have led to significant ecological global changes, such as climate change and resources overexploitation. The solid waste management, in an integrated way, has been capable of influencing and contributing to the solution of such challenges. The purpose of this chapter is to discuss the assessment and improvement of the waste collection system by using life cycle thinking, with a sustainable perspective. Several methodologies such as life cycle assessment, carbon footprint, life cycle costing, and social life cycle assessment will be presented and discussed concerning its application to waste collection systems and contribution to the integrated waste management system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altaf A, Hughes J (1994) Measuring the demand for improving urban sanitation services: results of a CV study in Ouagadougou, Burkina Faso. Urban Stud 31:19–30

    Google Scholar 

  • Ashby MF (2009) Materials and the environment: eco-informed material choice. Elsevier, Oxford

    Google Scholar 

  • Bare JC, Norris GA, Pennington DW (2003) TRACI, the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  • Benoît C, Norris GA, Valdivia S, Ciroth A, Moberg A, Bos U, Prakash S, Ugaya C, Beck T (2010) The guidelines for social life cycle assessment of products: just in time! Int J Life Cycle Assess 15:156–163

    Article  Google Scholar 

  • Benoît-Norris C, Vickery-Niederman G, Valdivia S, Franze J, Traverso M, Ciroth A, Mazijn B (2011) Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. Int J Life Cycle Assess 16:682–690

    Article  Google Scholar 

  • Bernstad A, la Cour Jansen J (2012) Review of comparative LCAs of food waste management systems – current status and potential improvements. Waste Manag 32:2439–2455

    Article  CAS  Google Scholar 

  • Björklund A, Dalemo M, Sonesson U (1999) Evaluating a municipal solid waste management plan using ORWARE. J Clean Prod 7:271–280

    Article  Google Scholar 

  • British Standards Institution (BSI) (2011) PAS 2050:2011 specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI, London

    Google Scholar 

  • Brogaard LK, Christensen TH (2012) Quantifying capital goods for collection and transport of waste. Waste Manag Res 30:1243–1250

    Article  Google Scholar 

  • Bueno G, Latasa I, Lozano PJ (2015) Comparative LCA of two approaches with different emphasis on energy or material recovery for a municipal solid waste management system in Gipuzkoa. Renew Sust Energ Rev 51:449–459

    Article  Google Scholar 

  • Chang NB, Pires A (2015) Sustainable solid waste management: a systems engineering approach, IEEE book series on systems science and engineering. Wiley–IEEE Press, Hoboken

    Google Scholar 

  • Chhipi-Shrestha GK, Hewage K, Sadiq R (2015) ‘Socializing’ sustainability: a critical review on current development status of social life cycle impact assessment method. Clean Technol Environ Policy 17:579–596

    Article  Google Scholar 

  • Christensen TH, Bhander G, Lindvall H, Larsen AW, Fruergaard T, Damgaard A, Manfredi S, Boldrin A, Riber C, Hauschild M (2007) Experience with the use of LCA–modelling (EASEWASTE) in waste management. Waste Manag Res 25:257–262

    Article  Google Scholar 

  • Cifrian E, Andres A, Viguri JR (2013) Estimating monitoring indicators and the carbon footprint of municipal solid waste management in the region of Cantabria, Northern Spain. Waste Biomass Valoriz 4:271–285

    Article  CAS  Google Scholar 

  • Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA–modelling of waste management systems. Waste Manag 32:2482–2495

    Article  Google Scholar 

  • Clavreul J, Baumeister H, Christensen TH, Damgaard A (2014) An environmental assessment system for environmental technologies. Environ Model Softw 60:18–30

    Article  Google Scholar 

  • Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer–reviewed literature. Environ Int 35:1256–1266

    Article  Google Scholar 

  • Consoli F, Allen D, Boustead I, Fava J, Franklin W, Jensen AA, de Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Séguin J, Vigon B (eds) (1993) Guidelines for life–cycle assessment: a ‘code of practice’. SETAC, Brussels

    Google Scholar 

  • Crawford RH (2011) Life cycle assessment in the built environment. Spon Press, New York

    Book  Google Scholar 

  • Curley M, Salmelin B (2013) Open innovation 20 – a new paradigm. https://ec.europa.eu/digital-single-market/en/news/open-innovation-20-%E2%80%93-new-paradigm-and-foundation-sustainable-europe. Accessed 10 Mar 2018

  • Curran MA (2006) Life cycle assessment: principles and practice. National Risk Management Research Laboratory – Office of Research and Development, USEPA, Cincinnati

    Google Scholar 

  • Dalemo M, Sonesson U, Björklund A, Mingarini K, Frostell B, Nybrant T, Jönsson H, Sundqvist J-O, Thyselius L (1997) ORWARE – a simulation model for organic waste handling systems. Resour Conserv Recycl 21:17–37

    Article  Google Scholar 

  • Dreyer LC, Hauschild MZ, Schierbeck J (2006) A framework for social life cycle impact assessment. Int J Life Cycle Assess 11:88–97

    Article  Google Scholar 

  • Dupré M, Meineri S (2016) Increasing recycling through displaying feedback and social comparative feedback. J Environ Psychol 48:101–107

    Article  Google Scholar 

  • Ecobilan (2004) WISARD – waste integrated system for analysis of recovery and disposal. Ecobilan

    Google Scholar 

  • Ekvall T, Tillman AM (1997) Open–loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2:155–162

    Article  Google Scholar 

  • Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171

    Article  Google Scholar 

  • Ekvall T, Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life–cycle assessment does and does not do in assessments of waste management. Waste Manag 27:989–996

    Article  Google Scholar 

  • EpE (2010) Protocol for the quantification of greenhouse gases emissions from waste management activities. http://www.epe-asso.org/en/protocol-quantification-greenhouse-gases-emissions-waste-management-activities-version-5-october-2013/. Accessed 15 Jan 2018

  • Eriksson M, Strid I, Hansson PA (2015) Carbon footprint of food waste management options in the waste hierarchy – a Swedish case study. J Clean Prod 93:115–125

    Article  Google Scholar 

  • European Commission–Joint Research Centre–Institute for Environment and Sustainability (EC–JRC–IES) (2010) International reference life cycle data system (ILCD) handbook general guide for life cycle assessment – detailed guidance. European Commission–Joint Research Centre–Institute for Environment and Sustainability, Luxembourg

    Google Scholar 

  • European Platform on Life Cycle Assessment (EPLCA) (2007) Carbon footprint – what it is and how to measure it. European Commission, Ispra

    Google Scholar 

  • Fantke PE, Huijbregts MAJ, Margni M, Hauschild MZ, Jolliet O, Mckone TE, Rosenbaum RK, van De Meent D (2015) USEtox 20 user manual (version 2). http://usetox.org. Accessed 15 Jan 2018

  • Fava J, Dennison R, Jones B, Curran MA, Vigon B, Selke S, Barnum J (eds) (1991) A technical framework for life–cycle assessment. SETAC and SETAC Foundation for Environmental Education, Washington, DC

    Google Scholar 

  • Fernández-Nava Y, del Río J, Rodríguez-Iglesias J, Castrillón L, Mara E (2014) Life cycle assessment of different municipal solid waste management options: a case study of Asturias (Spain). J Clean Prod 81:178–189

    Article  Google Scholar 

  • Fontaras G, Martini G, Manfredi U, Marotta A, Krasenbrink A, Maffioletti F, Terenghi R, Colombo M (2012) Assessment of on–road emissions of four Euro V diesel and CNG waste collection trucks for supporting air–quality improvement initiatives in the city of Milan. Sci Total Environ 426:65–72

    Article  CAS  Google Scholar 

  • Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco–efficiency. Int J Life Cycle Assess 15:666–671

    Article  CAS  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2008) The ecological scarcity method – eco-factors 2006. Federal Office for the Environment (FOEN), Bern

    Google Scholar 

  • Goedkoop M, Spriensma R (2000) The eco–indicator 99 – a damage–oriented method for life cycle impact assessment. https://www.pre-sustainability.com/download/EI99_annexe_v3.pdf. Accessed 15 Jan 2018

  • Goedkoop MJ, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008, a life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level. http://www.lcia-recipenet/. Accessed 12 Nov 2012

  • Guinée JB, Gorree M, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes A, de Buijn JA, van Duin R, Huijbregts MAJ (eds) (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hauschild MZ, Potting J (2005) Spatial differentiation in life cycle impacts assessment–the EDIP2003, Methodology environmental news no 80. Danish Ministry of the Environment, Environment Protection Agency, Copenhagen

    Google Scholar 

  • Hauschild MZ, Dreyer LC, Jørgensen A (2008) Assessing social impacts in a life cycle perspective–lessons learned. CIRP Ann Manuf Technol 57:21–24

    Article  Google Scholar 

  • Hosseinijou SA, Mansour S, Shirazi MA (2014) Social life cycle assessment for material selection: a case study of building materials. Int J Life Cycle Assess 19:620–645

    Article  Google Scholar 

  • Hunkeler D, Lichtenvort K, Rebitzer G (eds) (2008) Environmental life cycle costing. SETAC, Pensacola, FL (US) in collaboration with CRC Press, Boca Raton

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report: climate change 2007 (AR4). IPCC. http://www.ipccch/publications_and_data/publications_and_data_reports-html. Accessed 10 Nov 2012

  • International Organization for Standardization (ISO) (2006a) ISO 14040 environmental management – life cycle assessment: principles and framework. ISO, Geneva

    Google Scholar 

  • International Organization for Standardization (ISO) (2006b) ISO 14044 environmental management – life cycle assessment: requirements and guidelines. ISO, Geneva

    Google Scholar 

  • International Organization for Standardization (ISO) (2013) ISO/TS 14067 carbon footprint of products–requirements and guidelines for quantification and communication. ISO, Geneva

    Google Scholar 

  • Iofrida N, Strano A, Gulisano G, de Luca AI (2018) Why social life cycle assessment is struggling in development? Int J Life Cycle Assess 23:201–203

    Article  Google Scholar 

  • Iriarte A, Gabarrell X, Rieradevall J (2009) LCA of selective waste collection systems in dense urban areas. Waste Manag 29:903–914

    Article  Google Scholar 

  • Jaunich MK, Levis JW, DeCarolis JF, Gaston EV, Barlaz MA, Bartelt-Hunt SL, Jones EG, Hauser L, Jaikumar R (2016) Characterization of municipal solid waste collection operations. Resour Conserv Recycl 114:92–102

    Article  Google Scholar 

  • Jenkins RR, Martinez SA, Plamer K, Podolsky MJ (2003) The determinants of household recycling: a material–specific analysis of recycling program features and unit pricing. J Environ Econ Manag 45:294–318

    Article  Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Keramitsoglou KM, Tsagarakis KP (2013) Public participation in designing a recycling scheme in Didimoticho, Greece. Resour Conserv Recycl 70:55–67

    Article  Google Scholar 

  • Klöpffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95

    Article  Google Scholar 

  • Klöpffer W, Grahl B (2014) Life cycle assessment (LCA): a guide to best practice. Wiley, Weinheim

    Book  Google Scholar 

  • Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, Gentil E, Christensen TH, Hauschild MZ (2014) Review of LCA studies of solid waste management systems – part II: methodological guidance for a better practice. Waste Manag 34:589–606

    Article  Google Scholar 

  • Li Y, Khanal SK (2016) Bioenergy: principles and applications. Wiley Blackwell, Hoboken

    Google Scholar 

  • López JM, Gómez A, Aparicio F, Sánchez FJ (2009) Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid. Appl Energy 86:610–615

    Article  Google Scholar 

  • Maimoun MA, Reinhart DR, Gammoh FT, Budh PM (2013) Emissions from US waste collection vehicles. Waste Manag 33:1079–1089

    Article  Google Scholar 

  • Martinez-Sanchez V, Kromann MA, Astrup TF (2015) Life cycle costing of waste management systems: overview, calculation principles and case studies. Waste Manag 36:343–355

    Article  Google Scholar 

  • Martinez-Sanchez V, Tonini D, Møller F, Astrup TP (2016) Life–cycle costing of food waste management in Denmark: importance of indirect effects. Environ Sci Technol 50:4513–4523

    Article  CAS  Google Scholar 

  • McDougall F, White P, Franke M, Hindle P (2001) Integrated solid waste management: a life cycle inventory. Blackwell Science Ltd, Oxford

    Book  Google Scholar 

  • Meijer J, Kasem N, Lewis K (2017) SM transparency report™/EPD framework part A – LCA calculation rules and report requirements. http://www.sustainablemindscom/files/transparency/SM_Part_A_LCA_calculation_rules_and_report_requirements_2017pdf. Accessed 15 Feb 2018

  • Miafodzyeva S, Brandt N (2013) Recycling behaviour among householders: synthesizing determinants via a meta–analysis. Waste Biomass Valoriz 4:221–235

    Article  Google Scholar 

  • Pelletier N, Ardente F, Brandão M, de Camillis C, Pennington D (2015) Rationales for and limitations of preferred solutions for multi–functionality problems in LCA: is increased consistency possible? Int J Life Cycle Assess 20:74–86

    Article  Google Scholar 

  • Pérez J, Lumbreras J, Rodríguez E, Vedrenne M (2017) A methodology for estimating the carbon footprint of waste collection vehicles under different scenarios: application to Madrid. Transp Res Part D 52:156–171

    Article  Google Scholar 

  • Pires A, Sargedas J, Miguel M, Pina J, Martinho G (2017) A case study of packaging waste collection systems in Portugal – part II: environmental and economic analysis. Waste Manag 61:108–116

    Article  Google Scholar 

  • Porter RC (2002) The economics of waste. Resources for the Future, Washington DC

    Google Scholar 

  • Punkkinen H, Merta E, Teerioja N, Moliis K, Kuvaja E (2012) Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door–to–door system. Waste Manag 32:1775–1781

    Article  CAS  Google Scholar 

  • Rimos S, Hoadley AFA, Brennan DJ (2014) Environmental consequence analysis for resource depletion. Process Saf Environ Prot 92:849–861

    Article  CAS  Google Scholar 

  • Rödger J-M, Kær LL, Pagoropoulos A (2018) Life cycle costing: an introduction. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment – theory and practice. Springer, Cham, pp 373–399

    Chapter  Google Scholar 

  • Rose L, Hussain M, Ahmed S, Malek K, Costanzo R, Kjeang E (2013) A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city. Energy Policy 52:453–461

    Article  CAS  Google Scholar 

  • Rosenbaum RK, Hauschild MZ, Boulay A-M, Fantke P, Laurent A, Núñez M, Vieira M (2018) Life cycle impact assessment. In: Hauschild M, Rosenbaum RK, Olsen S (eds) Life cycle assessment: theory and practice. Springer, Cham, pp 167–270

    Chapter  Google Scholar 

  • Sandhu GS, Frey HF, Bartelt-Hunt S, Jones E (2014) In–use measurement of the activity, fuel use, and emissions of front–loader refuse trucks. Atmos Environ 92:557–565

    Article  CAS  Google Scholar 

  • Science for Environment Policy (SEP) (2018) Kerbside waste–collection schemes may need optimisation, highlights Portuguese study. European Commission DG Environment News Alert Service, issue 504, 7 March 2018, edited by SCU, The University of the West of England, Bristol

    Google Scholar 

  • Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Available via Chalmers University of Technology, Technical Environmental Planning. http://www.cpmchalmersse/document/reports/99/1999_4pdf. Accessed 11 Nov 2012

  • Sureau S, Mazijn B, Garrido SR, Achten WMJ (2018) Social life–cycle assessment frameworks: a review of criteria and indicators proposed to assess social and socioeconomic impacts. Int J Life Cycle Assess 23:904–920

    Article  Google Scholar 

  • Teerioja N, Moliis K, Kuvaja E, Ollikainen M, Punkkinen H, Merta E (2012) Pneumatic vs door–to–door waste collection systems in existing urban areas: a comparison of economic performance. Waste Manag 32:1782–1791

    Article  Google Scholar 

  • Tillman AM (2010) Methodology for life cycle assessment. In: Sonesson U, Berlin J, Ziegler F (eds) Environmental assessment and management in the food industry. Woodhead Publishing, Cambridge, pp 59–82

    Chapter  Google Scholar 

  • UNEP/SETAC (2009) Guidelines for social life cycle assessment of products. United Nations Environment Program, Paris SETAC Life Cycle Initiative United Nations Environment Programme

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2009) Waste reduction model (WARM). https://www.epagov/warm. Accessed 12 Jan 2018

  • Varotto A, Spagnolli A (2017) Psychological strategies to promote household recycling: a systematic review with meta–analysis of validated field interventions. J Environ Psychol 51:168–188

    Article  Google Scholar 

  • Wang J, Zhuang H, Lin PC (2016) The environmental impact of distribution to retail channels: a case study on packaged beverages. Transp Res Part D: Transp Environ 43:17–27

    Article  CAS  Google Scholar 

  • World Resources Institute (WRI), World and Business Council for Sustainable Development (WBCSD) (2011) Product life cycle accounting and reporting standard. Word Resources Institute and World Business Council for Sustainable Development, USA

    Google Scholar 

  • Yildiz-Geyhan E, Altun-Çiftçioğlu GA, Kadırgana MAN (2017) Social life cycle assessment of different packaging waste collection system. Resour Conserv Recycl 124:1–12

    Article  Google Scholar 

  • Zampori L, Dotelli G (2014) Design of a sustainable packaging in the food sector by applying LCA. Int J Life Cycle Assess 19:206–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pires, A., Martinho, G., Rodrigues, S., Gomes, M.I. (2019). Assessment and Improvement. In: Sustainable Solid Waste Collection and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-93200-2_11

Download citation

Publish with us

Policies and ethics