Skip to main content

Indicators for the Expected Loss of Phylogenetic Diversity

  • Chapter
  • First Online:
Phylogenetic Diversity

Abstract

PD or “phylogenetic diversity” was proposed by Faith (Biol Conserv 61:1–10, 1992) as a measure of biodiversity “option value”, justifying its importance as a target of biodiversity conservation. The threats to phylogenetic diversity can be quantified by integrating PD with IUCN Red List categories and corresponding inferred extinction probabilities, to estimate amounts of threatened or imperilled PD. Practical conservation applications face decisions about which summaries of imperilled PD best provide priority setting among species and about how to use limited available data to estimate imperilled PD. Extensions of Weitzman’s phylogenetic “expected distinctiveness” provide a unifying foundation for many useful expected PD calculations. This reinforces the utility of expected PD calculations compared to methods in the EDGE programme. However, simplistic use of expected PD also has weaknesses. A resulting priority set of species may neglect other species that also could deserve conservation action. Improved priority setting might utilise conservative estimates of the reduction in extinction probability from conservation action. The priority ordering of a species has been equated with its order of selection in priority sets, but should instead reflect the lost opportunity in averting PD loss if there is no conservation action on that species. Species priorities can be estimated, under simple assumptions, even with the simple “evolutionary distinctiveness” (ED) information that is available for many species from the EDGE programme. This provides a simple approach to priority setting in which threatened species are simply ranked by their ED score, as an estimate of their averted PD loss if the species is conserved. The approximations also provide a tabulation of current total expected PD loss for a given taxonomic group. For biodiversity assessments by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, this approach indicated fractional imperilled PD varying from a low 8% for squamates to a high 65% for corals among the assessments for six major taxonomic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker GM (2002) Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biol J Linn Soc 76:165–194

    Article  Google Scholar 

  • Brooks TM, Akçakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, Juffe-Bignoli D, Kingston N, MacSharry B, Parr M, Perianin L, Regan EC, Rodrigues ASL, Rondinini C, Shennan-Farpon Y, BE Y (2016a) Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci Data 3:160007 https://doi.org/10.1038/sdata.2016.7

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks TM, Akçakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, Juffe-Bignoli D, Kingston N, MacSharry B, Parr M, Perianin L, Regan EC, Rodrigues ASL, Rondinini C, Shennan-Farpon Y, Young BE (2016b) Data from: Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Dryad Digital Repository. https://doi.org/10.5061/dryad.6gb90.2

  • Chassagnon IR, McCarthy CA, China YK-Y, Pinedaa SS, Keramidasd A, Moblie M, Phamb V, Michael De Silvab T, Lynchd JW, Widdop RE, Rasha LD, King GF (2017) Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc Natl Acad Sci 114(14):3750–3755. https://doi.org/10.1073/pnas.1614728114

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary A, Pourfaraj V, Mooers AO (2017) Projecting global land use-driven evolutionary history loss. Divers Distrib 24(2):158–167

    Article  Google Scholar 

  • Daru BH, Yessoufou K, Mankga LT, Davies TJ (2013) A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS One 8:e66686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dıaz S et al (2015) The IPBES conceptual framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16. https://doi.org/10.1016/j.cosust.2014.11.002

    Article  Google Scholar 

  • EDGE of Existence (n.d.) https://www.edgeofexistence.org/ ZSL, London

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Faith DP (2007) Probabilistic PD. Edge of existence. Available from http://www.edgeofexistence.org/forum/forum_posts.asp?TID=13andPID=136#136 (Accessed December 2007)

  • Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv Biol 22:1461–1470. https://doi.org/10.1111/j.1523-1739.2008.01068.x)

    Article  PubMed  Google Scholar 

  • Faith DP (2013) Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann N Y Acad Sci 1289:69–89

    Article  PubMed  Google Scholar 

  • Faith DP (2015) Phylogenetic diversity and extinction: avoiding tipping points and worst-case losses from the tree of life. Philos Trans R Soc B 370:20140011

    Article  Google Scholar 

  • Faith DP (2017) A general model for biodiversity and its value. In: Garson J, Plutynski A, Sarkar S (eds) The Routledge handbook of philosophy of biodiversity https://www.routledge.com/products/9781138827738

    Google Scholar 

  • Faith DP, Walker PA (1996a) Integrating conservation and development: incorporating vulnerability into biodiversity-assessment of areas. Biodivers Conserv 5:417–429

    Article  Google Scholar 

  • Faith DP, Walker PA (1996b) DIVERSITY – XD. In: Faith DP, Nicholls AO (eds) BioRap, rapid assessment of biodiversity. Volume three, tools for assessing biodiversity priority areas, pp 51–62

    Google Scholar 

  • Forest F, Crandal KAl, Chase MW, Faith DP (2015) Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philosophical Transactions of the Royal Society B: Biological Sciences 370 (1662):20140002-20140002

    Google Scholar 

  • Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human Well-being. Curr Opin Environ Sustain 2:66–74

    Article  Google Scholar 

  • Hartmann K, Steel M (2006) Maximizing phylogenetic diversity in biodiversity conservation: greedy solutions to the Noah’s ark problem. Syst Biol 55:644–651

    Article  PubMed  Google Scholar 

  • Haskins C (1974) Scientists talk of the need for conservation and an ethic of biotic diversity to slow species extinction. Science 184:646–647

    Article  Google Scholar 

  • Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296

    Article  PubMed  PubMed Central  Google Scholar 

  • IUCN (1980) World Conservation Strategy: living resource conservation for sustainable development. International Union for Conservation of Nature and Natural Resources (IUCN), Gland, Switzerland

    Google Scholar 

  • Jensen EL et al (2016) I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ 4:e2350. https://doi.org/10.7717/peerj.2350

    Article  PubMed  PubMed Central  Google Scholar 

  • Mooers AO, Faith DP, Maddison WP (2008) Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS One 3:e3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes LA, Turvey ST, Rosindell J (2015) The price of conserving avian phylogenetic diversity: a global prioritization approach. Philos Trans R Soc B 370:20140004. https://doi.org/10.1098/rstb.2014.0004

    Article  Google Scholar 

  • Pascual U et al (2017) Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain 26:7

    Article  Google Scholar 

  • Davies K, Rajvanshi A, Yeo-Chang Y, et al. in press. Chapter 2. Nature’s contributions to people and quality of life. In M. Karki et al., ed. IPBES Regional and subregional assessment of biodiversity and ecosystem services for Asia and the Pacific. Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services, Bonn, Germany.

    Google Scholar 

  • Redding DW, Mooers AO (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678. https://doi.org/10.1111/j.1523-1739.2006.00555.x

    Article  PubMed  Google Scholar 

  • Rosindell J, Harmon LJ (2012) OneZoom: a fractal explorer for the tree of life. PLoS Biol 10(10):e1001406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi K, Armour-Marshall K, Baillie JEM, Isaac NJB (2013) Global patterns of evolutionary distinct and globally endangered amphibians and mammals. PLoS One 8(5):e63582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steel M, Mimoto A, Mooers AO (2007) Hedging one’s bets: quantifying a taxon’s expected contribution to future phylogenetic diversity. Evol Bioinformatics Online 3:237–244

    Google Scholar 

  • Thuiller W, Maiorano L, Mazel F, Guilhaumon F, Ficetola GF, Lavergne S, Renaud J, Roquet C, Mouillot D (2015) Conserving the functional and phylogenetic trees of life of European tetrapods. Philos Trans R Soc B 370:20140005

    Article  Google Scholar 

  • Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA (2016) Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol Conserv 204:23–31

    Article  Google Scholar 

  • Volkmann L, Martyn I, Moulton V, Spillner A, Mooers AO (2014) Prioritizing populations for conservation using phylogenetic networks. PLoS One 9:e88945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitzman ML (1992) On diversity. Q J Econ 107:363–405

    Article  Google Scholar 

  • Weitzman ML (1998) The Noah’s ark problem. Econometrica 66:1279–1298

    Article  Google Scholar 

  • Witting L, Loeschcke V (1995) The optimization of biodiversity conservation. Biol Conserv 71:205–207. https://doi.org/10.1016/0006-3207(94)00041-N

    Article  Google Scholar 

  • Yessoufou K, Daru BH, Tafirei R, Elansary HO, Rampedi I (2017) Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. Ecol Evol 7:2735–2746

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Faith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faith, D.P., Veron, S., Pavoine, S., Pellens, R. (2018). Indicators for the Expected Loss of Phylogenetic Diversity. In: Scherson, R., Faith, D. (eds) Phylogenetic Diversity. Springer, Cham. https://doi.org/10.1007/978-3-319-93145-6_4

Download citation

Publish with us

Policies and ethics