Skip to main content

Green Neighbourhoods: The Role of Big Data in Low Voltage Networks’ Planning

  • Chapter
  • First Online:
  • 1277 Accesses

Part of the book series: Studies in Big Data ((SBD,volume 42))

Abstract

In this chapter, we aim to illustrate the benefits of data collection and analysis to the maintenance and planning of current and future low voltage networks. To start with, we present several recently developed methods based on graph theory and agent-based modelling for analysis and short- and long-term prediction of individual households electric energy demand. We show how maximum weighted perfect matching in bipartite graphs can be used for short-term forecasts, and then review recent research developments of this method that allow applications on very large datasets. Based on known individual profiles, we then review agent-based modelling techniques for uptake of low carbon technologies taking into account socio-demographic characteristics of local neighbourhoods. While these techniques are relatively easily scalable, measuring the uncertainty of their results is more challenging. We present confidence bounds that allow us to measure uncertainty of the uptake based on different scenarios. Finally, two case-studies are reported, describing applications of these techniques to energy modelling on a real low-voltage network in Bracknell, UK. These studies show how applying agent-based modelling to large collected datasets can create added value through more efficient energy usage. Big data analytics of supply and demand can contribute to a better use of renewable sources resulting in more reliable, cheaper energy and cut our carbon emissions at the same time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, for half-hourly data if predicted peaks are early/late up to one hour and a half that means that a permutation window is 3.

References

  1. S. Arora, J. Taylor, Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59, 47–59 (2016)

    Article  Google Scholar 

  2. F. Bass, New product growth for model consumer durables. Manage. Sci. 15(5), 215–227 (1969)

    Article  Google Scholar 

  3. M. Brabec , O. Rej Konár, E. Pelikán, M. Malý, A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers. Int. J. Forecasting 24(4), 659–678 (2008). https://doi.org/10.1016/j.ijforecast.2008.08.005. http://www.sciencedirect.com/science/article/pii/S0169207008000976. Energy Forecasting

    Article  Google Scholar 

  4. M.A. Brown, Enhancing efficiency and renewables with smart grid technologies and policies. Futures 58(Supplement C), 21–33 (2014). https://doi.org/10.1016/j.futures.2014.01.001. http://www.sciencedirect.com/science/article/pii/S0016328714000020. SI: Low Carbon Futures

    Article  Google Scholar 

  5. N. Charlton, D. Vukadinovic Greetham, C. Singleton, Graph-based algorithms for comparison and prediction of household-level energy use profiles, in 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES), 119–124 2013. https://doi.org/10.1109/IWIES.2013.6698572

  6. R. Chatterjee, J. Eliashberg, The innovation diffusion process in a heterogeneous population: A micromodeling approach. Manage. Sci. 36(9), 1057–1079 (1990)

    Article  Google Scholar 

  7. Commission for Energy Regulation (CER): Smart metering electricity customer behaviour trials (2007). http://www.ucd.ie/issda/data/commissionforenergyregulation/ [online], data available from Irish Social Science Data Archive

  8. R.E. Edwards, J. New, L.E. Parker, Predicting future hourly residential electrical consumption: a machine learning case study. Energy and Buildings 49, 591–603 (2012). https://doi.org/10.1016/j.enbuild.2012.03.010. http://www.sciencedirect.com/science/article/pii/S0378778812001582

    Article  Google Scholar 

  9. K. Gajowniczek, T. abkowski, Electricity forecasting on the individual household level enhanced based on activity patterns. PLOS ONE 12(4), 1–26 (2017). https://doi.org/10.1371/journal.pone.0174098

    Article  Google Scholar 

  10. M. Gordon, M. aguna, S. oncalves, J. glesias, Adoption of innovations with contrarian agents and repentance. Phys.A: Stat. Mech. Appl. 486(Supplement C), 192–205 (2017)

    Article  Google Scholar 

  11. S. Haben, C. Singleton, P. Grindrod, Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 7(1), 136–144 (2016). http://centaur.reading.ac.uk/47589/

    Article  Google Scholar 

  12. S. Haben, J. Ward, D.V. Greetham, C. Singleton, P. Grindrod, A new error measure for forecasts of household-level, high resolution electrical energy consumption. Int. J. Forecasting 30(2), 246–256 (2014). https://doi.org/10.1016/j.ijforecast.2013.08.002. http://www.sciencedirect.com/science/article/pii/S0169207013001386

    Article  Google Scholar 

  13. P. Hanser, R. Lueken, W. Gorman, J. Mashal, The practicality of distributed PV-battery systems to reduce household grid reliance. Utilities Policy (in press), – (2017). https://doi.org/10.1016/j.jup.2017.03.004. http://www.sciencedirect.com/science/article/pii/S0957178715300758

  14. T. Hargreaves, M. Nye, J. Burgess, Keeping energy visible? exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52(Supplement C), 126–134 (2013). https://doi.org/10.1016/j.enpol.2012.03.027. http://www.sciencedirect.com/science/article/pii/S0301421512002327. Special Section: Transition Pathways to a Low Carbon Economy

    Article  Google Scholar 

  15. L. Hattam, D.V. Greetham, Green neighbourhoods in low voltage networks: measuring impact of electric vehicles and photovoltaics on load profiles. J. Mod. Power Sys. Clean Energy 5(1), 105–116 (2017)

    Article  Google Scholar 

  16. L. Hattam, D.V. Greetham, An innovation diffusion model of a local electricity network that is influenced by internal and external factors. Phys. A: Stat. Mech. Appl. 490(Supplement C), 353–365 (2018)

    Article  MathSciNet  Google Scholar 

  17. L. Hattam, D.V. Greetham, S. Haben, D. Roberts, Electric vehicles and low voltage grid: impact of uncontrolled demand side response in 24th International Conference and Exhibition on Electricity Distribution (CIRED), In press, 2017

    Google Scholar 

  18. K. Haynes, V. Mahajan, G. White, Innovation diffusion: a deterministic model of space-time integration with physical analog. Socio-Econ. Plann. Sci. 11(1), 25–29 (1977)

    Article  Google Scholar 

  19. HM Government: Smart meter roll-out (GB): cost-benefit analysis (Nov 2016). https://www.gov.uk/government/publications/smart-meter-roll-out-gb-cost-benefit-analysis. [online], Accessed 20 April 2017

  20. J. Hogg, J. Scott, On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. Numer. Linear. Algebra. Appl. 22(4), 648–663 (2015). https://doi.org/10.1002/nla.1978. Nla.1978

    Article  MathSciNet  Google Scholar 

  21. T. Hong, S. Fan, Probabilistic electric load forecasting: a tutorial review. Int. J. Forecasting 32(3), 914–938 (2016). https://doi.org/10.1016/j.ijforecast.2015.11.011. http://www.sciencedirect.com/science/article/pii/S0169207015001508

    Article  Google Scholar 

  22. J. de Hoog, V. Muenzel, D.C. Jayasuriya, T. Alpcan, M. Brazil, D.A. Thomas, I. Mareels, G. Dahlenburg, R. Jegatheesan, The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks. Energy. Sys. 6(1), 63–84 (2015). https://doi.org/10.1007/s12667-014-0122-8

  23. R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy. Int. J. Forecasting 22(4), 679–688 (2006). https://doi.org/10.1016/j.ijforecast.2006.03.001. http://www.sciencedirect.com/science/article/pii/S0169207006000239

    Article  Google Scholar 

  24. E. Karakaya, Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how? Appl. Energy 163, 464–475 (2016)

    Article  Google Scholar 

  25. E. Kiesling, M. Günther, C. Stummer, L. Wakolbinger, Agent-based simulation of innovation diffusion: a review. Central Eur. J. Oper. Res. 20(2), 183–230 (2012)

    Article  Google Scholar 

  26. R. McKenna, L. Hofmann, E. Merkel, W. Fichtner, N. Strachan, Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake. Energy Policy 97, 13–26 (2016). https://doi.org/10.1016/j.enpol.2016.06.042. http://www.sciencedirect.com/science/article/pii/S0301421516303469

    Article  Google Scholar 

  27. A. Molderink, V. Bakker, M.G.C. Bosman, J.L. Hurink, G.J.M. Smit, A three-step methodology to improve domestic energy efficiency, in 2010 Innovative Smart Grid Technologies (ISGT), 1–8 2010. https://doi.org/10.1109/ISGT.2010.5434731

  28. R. Morrill, The shape of diffusion in space and time. Econ. Geography 46, 259–268 (1970)

    Article  Google Scholar 

  29. J. Munkres, Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957)

    Article  MathSciNet  Google Scholar 

  30. M. Neaimeh, R. Wardle, A.M. Jenkins, J. Yi, G. Hill, P.F. Lyons, Y. Hbner, P.T. Blythe, P.C. Taylor, A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts. Appl. Energy 157, 688–698 (2015). https://doi.org/10.1016/j.apenergy.2015.01.144. http://www.sciencedirect.com/science/article/pii/S0306261915001944

    Article  Google Scholar 

  31. Pecan Street Inc: Dataport Pecan street (Nov 2016). http://dataport.pecanstreet.org. [online], accessed 20 April 2017

  32. S. Quoilin, K. Kavvadias, A. Mercier, I. Pappone, A. Zucker, Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment. Appl. Energy 182, 58–67 (2016). https://doi.org/10.1016/j.apenergy.2016.08.077. http://www.sciencedirect.com/science/article/pii/S0306261916311643

    Article  Google Scholar 

  33. E. Rogers, Diffusion of Innovations (The Free Press, New York, 1962)

    Google Scholar 

  34. M. Rowe, T. Yunusov, S. Haben, C. Singleton, W. Holderbaum, B. Potter A peak reduction scheduling algorithm for storage devices on the low voltage network. IEEE Trans. Smart Grid 5(4), 2115–2124 (2014). https://doi.org/10.1109/TSG.2014.2323115

    Article  Google Scholar 

  35. M. Sathe, O. Schenk, H. Burkhart, An auction-based weighted matching implementation on massively parallel architectures. Parallel Comput. 38(12), 595–614 (2012). https://doi.org/10.1016/j.parco.2012.09.001. http://www.sciencedirect.com/science/article/pii/S0167819112000750

    Article  MathSciNet  Google Scholar 

  36. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin Heidelberg, 2002)

    MATH  Google Scholar 

  37. M. Sharifzadeh, H. Lubiano-Walochik, N. Shah, Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies. Renewable Sustainable Energy Rev. 72, 385–398 (2017). https://doi.org/10.1016/j.rser.2017.01.069. http://www.sciencedirect.com/science/article/pii/S1364032117300795

    Article  Google Scholar 

  38. K. Shinohara, H. Okuda, Dynamic innovation diffusion modelling. Comput. Econom. 35(1), 51 (2009)

    Article  Google Scholar 

  39. R.P. Singh, P.X. Gao, D.J. Lizotte, On hourly home peak load prediction, in 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), 163–168 2012. https://doi.org/10.1109/SmartGridComm.2012.6485977

  40. B.K. Sovacool, P. Kivimaa, S. Hielscher, K. Jenkins, Vulnerability and resistance in the united kingdom’s smart meter transition. Energy Policy 109(Supplement C), 767–781 (2017). https://doi.org/10.1016/j.enpol.2017.07.037. http://www.sciencedirect.com/science/article/pii/S0301421517304688

  41. M. Sugiyama, Climate change mitigation and electrification. Energy Policy 44, 464–468 (2012). https://doi.org/10.1016/j.enpol.2012.01.028. http://www.sciencedirect.com/science/article/pii/S030142151200033X

    Article  Google Scholar 

  42. C. Sun, F. Sun, S.J. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics and batteries. J. Power Sources 325, 723–731 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.076. http://www.sciencedirect.com/science/article/pii/S0378775316307789

    Article  Google Scholar 

  43. C. Swinerd, K. McNaught, Design classes for hybrid simulations involving agent-based and system dynamics models. Simul. Modell. Practice Theory 25(Supplement C), 118–133 (2012)

    Article  Google Scholar 

  44. C. Swinerd, K. McNaught, Simulating the diffusion of technological innovation with an integrated hybrid agent-based system dynamics model. J. Simul. 8(3), 231–240 (2014)

    Article  Google Scholar 

  45. J.W. Taylor, A. Espasa, Energy forecasting. Int. J. Forecasting 24, 561–565 (2008)

    Article  Google Scholar 

  46. Taylor, J.W., de Menezes, L.M., McSharry, P.E.: A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecasting 22(1), 1–16 (2006). https://doi.org/10.1016/j.ijforecast.2005.06.006. http://www.sciencedirect.com/science/article/pii/S0169207005000907

    Article  Google Scholar 

  47. N. Tomizawa, On some techniques useful for solution of transportation network problems. Networks 1, 33–34 (1971)

    Article  MathSciNet  Google Scholar 

  48. Tzafestas, S., Tzafestas, E.: Computational intelligence techniques for short-term electric load forecasting. J. Intell. Rob. Sys. 31(1), 7–68 (2001). https://doi.org/10.1023/A:1012402930055

  49. J.D. Watson, N.R. Watson, D. Santos-Martin, A.R. Wood, S. Lemon, A.J.V. Miller, Impact of solar photovoltaics on the low-voltage distribution network in New Zealand. IET Generation, Transmission Distribution 10(1), 1–9 (2016). https://doi.org/10.1049/iet-gtd.2014.1076

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scottish and Southern Electricity Networks through the New Thames Valley Vision Project (SSET203 New Thames Valley Vision), and funded by the Low Carbon Network Fund established by Ofgem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Vukadinović Greetham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greetham, D.V., Hattam, L. (2019). Green Neighbourhoods: The Role of Big Data in Low Voltage Networks’ Planning. In: Emrouznejad, A., Charles, V. (eds) Big Data for the Greater Good. Studies in Big Data, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-93061-9_7

Download citation

Publish with us

Policies and ethics