Skip to main content

Biophysical Analysis of miRNA-Dependent Gene Regulation

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

microRNAs (miRNAs) are short (∼22 nucleotides long) RNAs that are encoded in the genome of species ranging from viruses to man. Together with proteins of the Argonaute family, they form RNA-induced silencing complexes, which bind target mRNAs, reducing their stability and translation rate. A miRNA typically has hundreds of evolutionarily conserved binding sites across the transcriptome, and frequently, a given mRNA carries binding sites for multiple miRNAs. In this chapter we discuss behaviors that miRNA-containing regulatory networks can exhibit, with specific examples from various experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahante JE, Daul AL, Li M et al (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4:625–637

    Article  PubMed  CAS  Google Scholar 

  • Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. https://doi.org/10.7554/eLife.05005

  • Arvey A, Larsson E, Sander C et al (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blevins R, Bruno L, Carroll T et al (2015) microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes. PLoS Genet 11:e1005020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosia C, Osella M, Baroudi ME et al (2012) Gene autoregulation via intronic microRNAs and its functions. BMC Syst Biol 6:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8:e66609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breda J, Rzepiela AJ, Gumienny R et al (2015) Quantifying the strength of miRNA-target interactions. Methods 85:90–99

    Article  PubMed  CAS  Google Scholar 

  • Buchler NE, Louis M (2008) Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 384:1106–1119

    Article  PubMed  CAS  Google Scholar 

  • Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassidy JJ, Jha AR, Posadas DM et al (2013) miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 155:1556–1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandradoss SD, Schirle NT, Szczepaniak M et al (2015) A dynamic search process underlies microRNA targeting. Cell 162:96–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S, Johnston RJ, Frøkjær-Jensen C et al (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430:785–789

    Article  PubMed  CAS  Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochella L, Hobert O (2012) Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell 151:1229–1242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cora’ D, Re A, Caselle M, Bussolino F (2017) MicroRNA-mediated regulatory circuits: outlook and perspectives. Phys Biol 14:045001

    Article  PubMed  CAS  Google Scholar 

  • Denzler R, Agarwal V, Stefano J et al (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denzler R, McGeary SE, Title AC et al (2016) Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64:565–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dill H, Linder B, Fehr A, Fischer U (2012) Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev 26:25–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ecsedi M, Rausch M, Großhans H (2015) The let-7 microRNA directs vulval development through a single target. Dev Cell 32:335–344

    Article  PubMed  CAS  Google Scholar 

  • Eichhorn SW, Guo H, McGeary SE et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97:168302

    Article  PubMed  CAS  Google Scholar 

  • Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grosswendt S, Filipchyk A, Manzano M et al (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5:671–683

    Article  PubMed  CAS  Google Scholar 

  • Gumienny R, Zavolan M (2015) Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43:1380–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions – beyond repression of gene expression. Nat Rev Genet 15:599–612

    Article  PubMed  CAS  Google Scholar 

  • Hausser J, Landthaler M, Jaskiewicz L et al (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Res 19:2009–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hausser J, Syed AP, Selevsek N et al (2013) Timescales and bottlenecks in miRNA-dependent gene regulation. Mol Syst Biol 9:711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heo I, Joo C, Cho J et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32:276–284

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24

    Article  PubMed  CAS  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41

    Article  PubMed  CAS  Google Scholar 

  • Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16:113–126

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  • Kasper DM, Moro A, Ristori E et al (2017) MicroRNAs establish uniform traits during the architecture of vertebrate embryos. Dev Cell 40:552–565.e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khorshid M, Hausser J, Zavolan M, van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10:253–255

    Article  PubMed  CAS  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  • Kumar RM, Cahan P, Shalek AK et al (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:56–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  PubMed  CAS  Google Scholar 

  • Laneve P, Po A, Favia A et al (2017) The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget 8:31003–31015

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5:e229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis BP, Shih I-H, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Li Q-J, Chau J, Ebert PJR et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  PubMed  CAS  Google Scholar 

  • Li X, Cassidy JJ, Reinke CA et al (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang W-C, Fu W-M, Wong C-W et al (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6:22513–22525

    PubMed  PubMed Central  Google Scholar 

  • Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459

    Article  PubMed  CAS  Google Scholar 

  • Martirosyan A, De Martino A, Pagnani A, Marinari E (2017) ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep 7:43673

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Megraw M, Sethupathy P, Gumireddy K et al (2010) Isoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theor Chem Acc 125:593–598

    Article  CAS  Google Scholar 

  • Mukherji S, Ebert MS, Zheng GXY et al (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362

    Article  PubMed  CAS  Google Scholar 

  • Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osella M, Riba A, Testori A et al (2014) Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet 5:345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I et al (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73

    Article  PubMed  CAS  Google Scholar 

  • Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5:854–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  • Riba A, Bosia C, El Baroudi M et al (2014) A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput Biol 10:e1003490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346:608–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmiedel JM, Klemm SL, Zheng Y et al (2015) Gene expression. MicroRNA control of protein expression noise. Science 348:128–132

    Article  PubMed  CAS  Google Scholar 

  • Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shkumatava A, Stark A, Sive H, Bartel DP (2009) Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes Dev 23:466–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taniguchi Y, Choi PJ, Li G-W et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, New York

    Google Scholar 

  • Vella MC, Choi E-Y, Lin S-Y et al (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev 18:132–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Sheng G, Juranek S et al (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Xu Z, Jiang J et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80

    Article  PubMed  CAS  Google Scholar 

  • Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151:1055–1067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Riba or Mihaela Zavolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riba, A., Osella, M., Caselle, M., Zavolan, M. (2018). Biophysical Analysis of miRNA-Dependent Gene Regulation. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_13

Download citation

Publish with us

Policies and ethics