Skip to main content

Legume Nitrogen Utilization Under Drought Stress

  • Chapter
  • First Online:
  • 916 Accesses

Abstract

Legumes account for around 27% of the world’s primary crop production and can be classified based on their use and traits into grain and forage legumes . Legumes can establish symbiosis with N-fixing soil bacteria . As a result, a new organ is formed, the nodule, where the reduction of atmospheric N2 into ammonia is carried out catalyzed by the bacterial exclusive enzyme nitrogenase. The process, highly energy demanding, is known as symbiotic nitrogen fixation and provides all the N needs of the plant , thus avoiding the use of N fertilizers in the context of sustainable agriculture. However, legume crops are often grown under non-fixing conditions since legume nodulation is suppressed by high levels of soil nitrogen occurring in chemically fertilized agro-environment . In addition, legumes are very sensitive to environmental stresses, being drought one of the significant constraints affecting crop production. Due to their agricultural and economic importance, scientists have carried out basic and applied research on legumes to better understand responses to abiotic stresses and to further comprehend plant –microbe interactions. An integrated view of nitrogen utilization under drought stress will be presented with particular focus on legume crops .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews M (1986) Nitrate and reduced-N concentrations in the xylem sap of Stellaria media, Xanthium strumarium and six legume species. Plant, Cell Environ 9:605–608

    CAS  Google Scholar 

  • Araujo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci 16:489–498

    PubMed  CAS  Google Scholar 

  • Ariz I, Esteban R, García-Plazaola JI, Becerril JM, Aparicio-Tejo PM, Moran JF (2010) High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L. J Plant Physiol 167:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Atkins CA, Pate JS, Peoples MB, Joy KW (1983) Amino acid transport and metabolism in relation to the nitrogen economy of a legume leaf. Plant Physiol 71:841–848

    Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  • Bacanamwo M, Harper JE (1997) The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism. Physiol Plant 100:371–377

    Article  CAS  Google Scholar 

  • Baier MC, Barsch A, Kuester H, Hohnjec N (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj S, Targolli J, Liu LF, David Ho TH, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brown CM, Dilworth MJ (1975) Ammonia assimilation by rhizobium cultures and bacteroids. J General Microbiol 86:39–48

    Article  CAS  Google Scholar 

  • Coruzzi GM (2003) Primary N-assimilation into amino acids in Arabidopsis. Arabidopsis Book 2:e0010

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Article  Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA, Yu X, Luo L, Cui K (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:e0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Castillo LD, Layzell DB (1995) Drought stress, permeability to O2 diffusion, and the respiratory kinetics of soybean root-nodules. Plant Physiol 107:1187–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Castillo LD, Hunt S, Layzell DB (1994) The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106:949–955

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Cruz C, Martins- Loução MA, Moran JF (2008) Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and -sensitive plants. Physiol Plant 132:359–369

    Article  CAS  PubMed  Google Scholar 

  • Durand JL, Sheehy JE, Minchin FR (1987) Nitrogenase activity, photosynthesis and nodule water potential in soybean plants experiencing water-deprivation. J Exp Bot 38:311–321

    Article  CAS  Google Scholar 

  • Edgerton SA, MacCracken MC, Jacobson MZ, Ayala A, Whitman CE, Trexler MC (2008) Prospects for future climate change and the reasons for early action. J Air Waste Manage Assoc 58:1386–1400

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Sustain Agric. Springer, Netherlands, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Foyer CH, Valadier M-H, Migge A, Becker TW (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of Nitrogen and carbon metabolism in maize leaves. Plant Physiol 117:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frechilla S, González EM, Royuela M, Minchin FR, Aparicio-Tejo PM, Arrese-Igor C (2000) Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. J Plant Physiol 157:609–617

    Article  CAS  Google Scholar 

  • Fresneau C, Ghashghaie J, Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58:2983–2992

    Article  CAS  PubMed  Google Scholar 

  • Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T (2013) Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol 54:934–943

    Article  CAS  PubMed  Google Scholar 

  • Galvez L, Gonzalez EM, Arrese-Igor C (2005) Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J Exp Bot 56:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ME, Medina V (2016) Drought adaptation mechanisms should guide experimental design. Trends Plant Sci 21:639–647

    Article  CAS  PubMed  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Arrese-Igor C, González EM (2013a) Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula? J Exp Bot 64:281–292

    Article  CAS  PubMed  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Seminario A, Diaz-Leal JL, Alamillo JM, Pineda M, Arrese-Igor C, Wienkoop S, Gonzalez EM (2013b) Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot 64:2171–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EM, Aparicio-Tejo PM, Gordon AJ, Minchin FR, Royuela M, Arrese-Igor C (1998) Water-deficit effects on carbon and nitrogen metabolism of pea nodules. J Exp Bot 49:1705–1714

    Article  CAS  Google Scholar 

  • Gonzalez EM, Gordon AJ, James C, Arrese-Igor C (1995) The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46:1515–1523

    Article  CAS  Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon AJ, Minchin FR, Skot L, James CL (1997) Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol 114:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Develop Biol 419:64–77

    Article  CAS  PubMed  Google Scholar 

  • Guan M, Møller IS, Schjoerring JK (2015) Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. J Exp Bot 66:203–212

    Article  CAS  PubMed  Google Scholar 

  • Hachiya T, Ueda N, Kitagawa M, Hanke G, Suzuki A, Hase T, Sakakibara H (2016) Arabidopsis root-type ferredoxin:NADP(H) oxidoreductase 2 is involved in detoxification of nitrite in roots. Plant Cell Physiol 57:2440–2450

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun H-P (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol Plant Mol Biol 24:519–570

    Article  CAS  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiol 146:1797–1814

    Article  CAS  Google Scholar 

  • Jacobsen SE, Jensen CR, Liu F (2012) Improving crop production in the arid mediterranean climate. Field Crops Res 128:34–47

    Article  Google Scholar 

  • Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Hartung W (2000) Root–shoot interactions in mineral nutrition. Plant Soil 226:57–69

    Article  CAS  Google Scholar 

  • Jeuffroy MH, Ney B (1997) Crop physiology and productivity. Field Crop Res 53:3–16

    Article  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli A, Narciso JO, Miro B, Raorane M (2012) Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance. Physiol Plant 145:165–179

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, Gonzalez EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrainzar E, Wienkoop S, Scherling C, Kempa S, Ladrera R, Arrese-Igor C, Weckwerth W, Gonzalez EM (2009) Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery. Mol Plant-Microbe Interact 22:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Lyon D, Castillejo MA, Mehmeti-Tershani V, Staudinger C, Kleemaier C, Wienkoop S (2016) Drought and recovery: independently regulated processes highlighting the importance of protein turnover dynamics and translational regulation in Medicago truncatula. Mol Cell Proteomics 15:6

    Article  CAS  Google Scholar 

  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, Gonzalez EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143:1968–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O’Connell MA (2007) Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci 173:510–520

    Article  CAS  Google Scholar 

  • Miller AJ, Shen Q, Xu G (2008) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    Article  CAS  Google Scholar 

  • Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Nat l Acad Sci USA 109:339–344

    Article  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Murray JD, Cheng-Wu L, Chen Y, Miller AJ (2017) Nitrogen sensing in legumes. J Exp Bot 68:1919–1926

    PubMed  CAS  Google Scholar 

  • Naya L, Ladrera R, Ramos J, Gonzalez EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neo HH, Layzell DB (1997) Phloem glutamine and the regulation of O2 diffusion in legume nodules. Plant Physiol 113:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pate JS, Gunning BES, Briarty LG (1969) Ultrastructure and functioning of transport system of leguminous root nodule. Planta 85:11–34

    Article  CAS  PubMed  Google Scholar 

  • Perez E, Thompson P (1996) Natural hazards: causes and effects. Lesson 7-drought. Prehosp Disaster Med 11:71–77

    Article  CAS  PubMed  Google Scholar 

  • Postel SL (2000) Water and world population growth. Am Water Works Assoc J 92:131–138

    Article  CAS  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556

    Article  CAS  PubMed  Google Scholar 

  • Ramos MLG, Gordon AJ, Minchin FR, Sprent JI, Parsons R (1999) Effect of water stress on nodule physiology and biochemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 83:57–63

    Article  CAS  Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E, Frommer WB (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago JP, Tegeder M (2016) Connecting source with sink: the role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol 171:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheurwater I, Koren M, Lambers H, Atkin OK (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J Exp Bot 53:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Article  Google Scholar 

  • Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvement of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu FH, Shang H, Glassgold AE, Lee T, Baker J, Bizzarro M, Wittig N, Connelly J, Haack H (2007) Model projections of an imminent transition to a more arid climate. Science 316:1181–1475

    Article  CAS  Google Scholar 

  • Somerville C, Briscoe J (2001) Genetic engineering and water. Science 292:2217

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. R Bot Gardens, Kew

    Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM, Schulze J (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140:21–31

    Article  CAS  PubMed  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2013) Global warming and changes in drought. Nat Clim Change 4:17–22

    Article  Google Scholar 

  • Trepp GB, Plank DW, Gantt JS, Vance CP (1999a) NADH-glutamate synthase in alfalfa root nodules.Immunocytochemical localization. Plant Physiol 119:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trepp GB, van de Mortel M, Yoshioka H, Miller SS, Samac DA, Gantt JS, Vance CP (1999b) NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. Plant Physiol 119:817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Sinclair TR (2000) Ureide degradation pathways in intact soybean leaves. J Exp Bot 51:1459–1465

    PubMed  CAS  Google Scholar 

  • Vadez V, Sinclair T, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoots as feedback inhibitors of N2 fixation in soybean. Physiol Plant 110:215–223

    Article  CAS  Google Scholar 

  • Vance CP, Gregerson RG, Robinson DL, Miller SS, Gantt JS (1994) Primary assimilation of nitrogen in alfalfa nodules—molecular features of the enzymes involved. Plant Sci 101:51–64

    Article  CAS  Google Scholar 

  • Walsh KB, Canny MJ, Layzell DB (1989a) Vascular transport and soybean nodule function.2. A role for phloem supply in product export. Plant, Cell Environ 12:713–723

    Article  CAS  Google Scholar 

  • Walsh KB, McCully ME, Canny MJ (1989b) Vascular transport and soybean nodule function—nodule xylem is a blind alley, not a throughway. Plant, Cell Environ 12:395–405

    Article  Google Scholar 

  • Wan Y, King R, Mitchell RAC, Hassani-Pak K, Hawkesford MJ (2017) Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Sci Rep 7:5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Balazadeh S, Tohge T, Erban A, Giavalisco P, Kopka J, Mueller-Roeber B, Fernie AR, Hoefgen R (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worrall VS, Roughley RJ (1976) Effect of moisture stress on infection of Trifolium Subterraneum L. by RhizobiumTrifolii Dang. J Exp Bot 27:1233–1241

    Article  Google Scholar 

  • Zhang JY, Cruz DE, Carvalho MH, Torres-Jerez I, Kang Y, Allen SN, Huhman D, Tang Y, Murray J, Sumner LW, Udvardi MK (2014) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant, Cell Environ 37:2553–2576

    Article  Google Scholar 

  • Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M (2010) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22:3603–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Ma H, Yu L, Wang X, Zhao J (2012) Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.). PLoS ONE 7:e49210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EM. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castañeda, V., Gil-Quintana, E., Echeverria, A., González, E. (2018). Legume Nitrogen Utilization Under Drought Stress. In: Shrawat, A., Zayed, A., Lightfoot, D. (eds) Engineering Nitrogen Utilization in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-92958-3_10

Download citation

Publish with us

Policies and ethics