Skip to main content

Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization

  • Chapter
  • First Online:
Book cover Handbook of Materials Characterization

Abstract

Infrared spectroscopy is an extremely important instrumental tool in applied and basic sciences for the determination of various functional groups. In this chapter, we have described in detail the range of electromagnetic spectrum, IR regions, and basic principal by which IR radiations interact with matter. The identification of various functional groups in different class of organic compounds is also described. A detailed instrumentation is given in later section. The FTIR-ATR and its instrumentation were also explained, and finally its application for the characterization of nanomaterials is described. The application of IR spectroscopy in various fields is explained in detailed. It is noteworthy the IR is only active for that molecule which has a net dipole moment. A molecule and pure element have zero dipole moment, therefore, are not active in IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shrivastava, N., Khan, L., Vargas, J., Ospina, C., Coaquira, J., Zoppellaro, G., Brito, H., Javed, Y., Shukla, D., & Felinto, M. (2017). Efficient multicolor tunability of ultrasmall ternary-doped LaF 3 nanoparticles: Energy conversion and magnetic behavior. Physical Chemistry Chemical Physics, 19, 18660–18670.

    Article  CAS  Google Scholar 

  2. Khan, L. U., Brito, H. F., Hölsä, J., Pirota, K. R., Muraca, D., Felinto, M. C., Teotonio, E. E., & Malta, O. L. (2014). Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes. Inorganic Chemistry, 53, 12902–12910.

    Article  CAS  Google Scholar 

  3. Herschel, W. (1800). XIII. Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers. Philosophical Transactions of the Royal Society of London, 90, 255–283.

    Article  Google Scholar 

  4. Jacquinot, P. (1954). The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons. JOSA, 44, 761–765.

    Article  CAS  Google Scholar 

  5. Fellgett, P. (1958). Equivalent quantum-efficiencies of photographic emulsions. Monthly Notices of the Royal Astronomical Society, 118, 224–233.

    Article  CAS  Google Scholar 

  6. Connes, J. R. (1961). Recherches sur la spectroscopie par transformations de Fourier, Éd. de la” Revue d’optique théorique et instrumentale.

    Google Scholar 

  7. Chamberlain, G. (1979). Analysis of covariance with qualitative data. Cambridge, MA: National Bureau of Economic Research.

    Book  Google Scholar 

  8. Kauppinen, J., & Partanen, J. Frontmatter and index, fourier transforms in spectroscopy, i–ix.

    Google Scholar 

  9. Rubens, H., & Wood, R. (1911). XXVII. Focal isolation of long heat-waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 249–261.

    Article  CAS  Google Scholar 

  10. Rubens, H., & Von Baeyer, O. (1911). LXXX. On extremely long waves, emitted by the quartz mercury lamp. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 689–695.

    Article  CAS  Google Scholar 

  11. Illingworth, K. (1927). A repetition of the Michelson-Morley experiment using Kennedy’s refinement. Physical Review, 30, 692.

    Article  Google Scholar 

  12. Camy-Peyret, C., Flaud, J.-M., Mandin, J.-Y., Chevillard, J.-P., Brault, J., Ramsay, D., Vervloet, M., & Chauville, J. (1985). The high-resolution spectrum of water vapor between 16500 and 25250 cm−1. Journal of Molecular Spectroscopy, 113, 208–228.

    Article  CAS  Google Scholar 

  13. Blakeney, A. B., Harris, P. J., Henry, R. J., & Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 113, 291–299.

    Article  CAS  Google Scholar 

  14. Kauppinen, J. (1979). Working resolution of 0.010 cm−1 between 20 cm−1 and 1200 cm−1 by a Fourier spectrometer. Applied Optics, 18, 1788–1796.

    Article  CAS  Google Scholar 

  15. Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015). Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. International Journal of Molecular Sciences, 16, 30223–30250.

    Article  CAS  Google Scholar 

  16. Genzel, R., Lutz, D., Sturm, E., Egami, E., Kunze, D., Moorwood, A., Rigopoulou, D., Spoon, H., Sternberg, A., & Tacconi-Garman, L. (1998). What powers ultraluminous IRAS galaxies? The Astrophysical Journal, 498, 579.

    Article  CAS  Google Scholar 

  17. Livingston, D. M. (1973). The master of light: A biography of Albert Abraham Michelson. Chicago: The University Press of Chicago.

    Google Scholar 

  18. Smith, B. C. (2011). Fundamentals of fourier transform infrared spectroscopy. Boca Raton: CRC press.

    Book  Google Scholar 

  19. Johnston, S. F. (1991). Fourier transform infrared: A constantly evolving technology. New York: Ellis Horwood.

    Google Scholar 

  20. Ng, L. Y., Mohammad, A. W., Leo, C. P., & Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 308, 15–33.

    Article  CAS  Google Scholar 

  21. Yao, H., Li, F., Lutkenhaus, J., Kotaki, M., & Sue, H.-J. (2016). High-performance photocatalyst based on nanosized ZnO-reduced graphene oxide hybrid for removal of rhodamine B under visible light irradiation. AIMS Materials Science, 3, 1410.

    Article  CAS  Google Scholar 

  22. Khan, S. A., Khan, S. B., & Asiri, A. M. (2015). Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New Journal of Chemistry, 39, 5561–5569.

    Article  CAS  Google Scholar 

  23. Hidalgo, D., Bocchini, S., Fontana, M., Saracco, G., & Hernández, S. (2015). Green and low-cost synthesis of PANI–TiO 2 nanocomposite mesoporous films for photoelectrochemical water splitting. RSC Advances, 5, 49429–49438.

    Article  CAS  Google Scholar 

  24. Thema, F., Beukes, P., Gurib-Fakim, A., & Maaza, M. (2015). Green synthesis of monteponite CdO nanoparticles by Agathosma betulina natural extract. Journal of Alloys and Compounds, 646, 1043–1048.

    Article  CAS  Google Scholar 

  25. Kazarian, S., & Chan, K. (2006). Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1758, 858–867.

    Article  CAS  Google Scholar 

  26. Lasch, P., Boese, M., Pacifico, A., & Diem, M. (2002). FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 28, 147–157.

    Article  CAS  Google Scholar 

  27. Choo, L.-P., Wetzel, D. L., Halliday, W. C., Jackson, M., LeVine, S. M., & Mantsch, H. H. (1996). In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophysical Journal, 71, 1672–1679.

    Article  CAS  Google Scholar 

  28. Sommer, A. J., Tisinger, L. G., Marcott, C., & Story, G. M. (2001). Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope. Applied Spectroscopy, 55, 252–256.

    Article  CAS  Google Scholar 

  29. Kazarian, S. G., & Chan, K. A. (2006). Sampling approaches in fourier transform infrared imaging applied to polymers, Characterization of polymer surfaces and thin films (pp. 1–6). Springer. Berlin, Heidelberg.

    Google Scholar 

  30. Chan, K., & Kazarian, S. (2003). New opportunities in micro-and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Applied Spectroscopy, 57, 381–389.

    Article  CAS  Google Scholar 

  31. Colley, C., Kazarian, S., Weinberg, P., & Lever, M. (2004). Spectroscopic imaging of arteries and atherosclerotic plaques. Biopolymers, 74, 328–335.

    Article  CAS  Google Scholar 

  32. Petibois, C., & Desbat, B. (2010). Clinical application of FTIR imaging: New reasons for hope. Trends in Biotechnology, 28, 495–500.

    Article  CAS  Google Scholar 

  33. Herschel, W. (1801). Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society of London, 91, 265–318.

    Article  Google Scholar 

  34. Coblentz, W. W. (1905). Investigations of infra-red spectra. Washington, DC: Carnegie institution of Washington.

    Google Scholar 

  35. Smith, A. L. (1979). Applied infrared spectroscopy: Fundamentals, techniques, and analytical problem-solving. New York: Wiley.

    Google Scholar 

  36. Rothschild, K. J. (2016). The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. Biomedical Spectroscopy and Imaging, 5, 231–267.

    Article  Google Scholar 

  37. Derrick, M. R., Stulik, D., & Landry, J. M. (2000). Infrared spectroscopy in conservation science. Los Angeles: Getty Publications.

    Google Scholar 

  38. Elliott, A., & Ambrose, E. (1950). Structure of synthetic polypeptides. Nature, 165, 921–922.

    Article  CAS  Google Scholar 

  39. Elliott, A., Ambrose, E., & Robinson, C. (1950). Chain configurations in natured and denatured insulin: Evidence from infra-red spectra. Nature, 166, 194–194.

    Article  CAS  Google Scholar 

  40. Anderson, D., & Bellamy, L. J. (1975). The infrared spectra of complex molecules. London: Chapman and Hall xix+ 433 pp., price£ 8.00, Elsevier, 1976.

    Google Scholar 

  41. Miyazawa, T., & Shimanouchi, T. (1958). S.i. Mizushima, normal vibrations of N-methylacetamide. The Journal of Chemical Physics, 29, 611–616.

    Article  CAS  Google Scholar 

  42. Jabs, A. (2005). Determination of secondary structure in proteins by fourier transform infrared spectroscopy (FTIR), Jena Library of Biological Molecules [online][cited 16. 2. 2011]. Available online: http://www.imbjena.de/ImgLibDoc/ftir/IMAGE_FTIR.html.

Download references

Acknowledgment

The authors highly acknowledge the Chemistry Department and Center of Excellence for Advanced Materials Research King Abdulaziz University, Jeddah, Saudi Arabia and Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan for providing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Bahadar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.A., Khan, S.B., Khan, L.U., Farooq, A., Akhtar, K., Asiri, A.M. (2018). Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_9

Download citation

Publish with us

Policies and ethics