Skip to main content

Liver Assist Systems for Bridging to Transplantation: Devices and Concepts

  • Chapter
  • First Online:
Critical Care for Potential Liver Transplant Candidates

Abstract

Liver transplantation continues to be the gold standard for the treatment of patients with acute liver failure, chronic liver diseases, and in the early stages of hepatocellular carcinoma. However, the success of liver transplantation is increasingly limited by the lack of suitable donor organs. Liver support systems have been developed in order to solve this issue by providing temporary support for the failing liver, thereby either helping to bridge the time until a suitable liver graft becomes available, or giving the patient’s liver a chance to regenerate. We here discuss the conceptual background of the devices and practices currently in use and under development for liver assist: I. artificial und bioartificial liver support devices, II. hepatocyte transplantation, and III. the bioengineered liver. Liver support devices and hepatocyte transplantation have already been clinically evaluated. Yet, the bioengineered liver is still a challenge although also a goal for the near future. Not all the systems described are ready to apply in clinical routines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqahtani SA. Update in liver transplantation. Curr Opin Gastroenterol. 2012;28(3):230–8.

    Article  PubMed  Google Scholar 

  2. Jahresbericht Organspende und Transplantation in Deutschland 2016. Deutsche Stiftung Organtransplantation. p. 82.

    Google Scholar 

  3. www.unos.org.

  4. Pais R, Barritt AS 4th, Calmus Y, Scatton O, Runge T, Lebray P, Poynard T, Ratziu V, Conti FJ. NAFLD and liver transplantation: current burden and expected challenges. J Hepatol. 2016;65(6):1245–57. https://doi.org/10.1016/j.jhep.2016.07.033. Epub 2016 Jul 30.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Study on the uptake and impact of the EU Action Plan on organ donation and transplantation (2009–2015) in the EU Member States. European Commission. 2017. pp. 5–7.

    Google Scholar 

  6. Council of Europe. Newsletter Transplant. International figures on donation and transplantation 2015. 2016. p. 16, pp. 43–45.

    Google Scholar 

  7. Council of Europe. Trafficking in organs, tissues and cells and trafficking in human beings for the purpose of the removal of organs. 2009.

    Google Scholar 

  8. Kamath PS1, Kim WR, Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology. 2007;45(3):797–805.

    Article  PubMed  Google Scholar 

  9. Tacke F, Kroy DC, Barreiros AP, Neumann UP. Liver transplantation in Germany. Liver Transpl. 2016;22(8):1136–42. https://doi.org/10.1002/lt.24461.

    Article  PubMed  Google Scholar 

  10. Otto G. Liver transplantation: an appraisal of the present situation. Dig Dis. 2013;31(1):164–9. https://doi.org/10.1159/000347213. Epub 2013 Jun 17.

    Article  PubMed  Google Scholar 

  11. Mitzner SR. Extracorporeal liver support-albumin dialysis with the Molecular Adsorbent Recirculating System (MARS). Ann Hepatol. 2011;10:21–8.

    Google Scholar 

  12. Sauer IM, Goetz M, Steffen I, et al. In vitro comparison of the molecular adsorbent recirculation system (MARS) and single-pass albumin dialysis (SPAD). Hepatology. 2004;39:1408–144.

    Article  CAS  PubMed  Google Scholar 

  13. Rifai K. Fractionated plasma separation and adsorption: current practice and future options. Liver Int. 2011;31:13–5.

    Article  PubMed  Google Scholar 

  14. Al-Chalabi A, et al. Evaluation of the Hepa Wash(R) treatment in pigs with acute liver failure. BMC Gastroenterol. 2013;13:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Demetriou AA, Brown RS Jr, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–70.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sussman NL, Gislason GT, Conlin CA, et al. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs. 1994;18:390–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Müller AR, Steinmüller T, Denner J, Neuhaus P, Gerlach JC. Clinical extracorporeal hybrid liver support–phase I study with primary porcine liver cells. Xenotransplantation. 2003;10(5):460–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sauer IM, Zeilinger K, Pless G, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis – treatment of a patient with primary graft non-function. J Hepatol. 2003;39:649–53.

    Article  PubMed  Google Scholar 

  19. van de Kerkhove MP, Di Florio E, Scuderi V, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs. 2002;25:950–9.

    Article  PubMed  Google Scholar 

  20. Olson JC, Karvellas CJ. Critical care management of the cirrhotic patient awaiting liver transplant in the intensive care unit. Liver Transpl. 2017;23:1465.

    Article  PubMed  Google Scholar 

  21. Mitzner SR, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: results of a prospective, randomized, controlled clinical trial. Liver Transpl Off Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2000;6:277–86.

    CAS  Google Scholar 

  22. Heemann U, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36:949–58.

    Article  CAS  PubMed  Google Scholar 

  23. Sen S, et al. Pathophysiological effects of albumin dialysis in acute-on-chronic liver failure: a randomized controlled study. Liver Transpl Off Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2004;10:1109–19.

    Google Scholar 

  24. Hassanein TI, et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology. 2007;46:1853–62.

    Article  CAS  PubMed  Google Scholar 

  25. Banares R, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57:1153–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kribben A, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:782–789.e783.

    Article  CAS  PubMed  Google Scholar 

  27. Demetriou AA, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–7. ; discussion 667–70.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stutchfield BM, Simpson K, Wigmore SJ. Systematic review and meta-analysis of survival following extracorporeal liver support. Br J Surg. 2011;98:623–31.

    Article  CAS  PubMed  Google Scholar 

  29. Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7(5):288–98. ** of considerable interest, as this article reviews the current state of clinical LCT.

    Article  PubMed  Google Scholar 

  30. Dhawan A, Strom SC, Sokal E, Fox IJ. Human hepatocyte transplantation. Methods Mol Biol. 2010;640:525–34.

    Article  PubMed  Google Scholar 

  31. Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation. 2012;93(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  32. Strom SC, Fisher RA, Rubinstein WS, et al. Transplantation of human hepatocytes. Transplant Proc. 1997;29(4):2103–6.

    Article  CAS  PubMed  Google Scholar 

  33. Horslen SP, McCowan TC, Goertzen TC, et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics. 2003;111(6 Pt 1):1262–7.

    Article  PubMed  Google Scholar 

  34. Stéphenne X, Najimi M, Smets F, Reding R, de Ville de Goyet J, Sokal EM. Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant. 2005;5(8):2058–61.

    Article  PubMed  Google Scholar 

  35. Puppi J, Tan N, Mitry RR, et al. Hepatocyte transplantation followed by auxiliary liver transplantation – a novel treatment for ornithine transcarbamylase deficiency. Am J Transplant. 2008;8(2):452–7.

    Article  CAS  PubMed  Google Scholar 

  36. Meyburg J, Das AM, Hoerster F, et al. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation. 2009;87(5):636–41.

    Article  PubMed  Google Scholar 

  37. Stéphenne X, Najimi M, Sibille C, Nassogne MC, Smets F, Sokal EM. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology. 2006;130(4):1317–23.

    Article  PubMed  Google Scholar 

  38. Dhawan A, Mitry RR, Hughes RD. Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis. 2006;29(2–3):431–5.

    Article  PubMed  Google Scholar 

  39. Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl. 2008;14(5):688–94.

    Article  PubMed  Google Scholar 

  40. Soltys KA, Soto-Gutiérrez A, Nagaya M, et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J Hepatol. 2010;53(4):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schneider A, Attaran M, Meier PN, et al. Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation. 2006;82(8):1115–6.

    Article  PubMed  Google Scholar 

  42. Khan AA, Habeeb A, Parveen N, et al. Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report. Trop Gastroenterol. 2004;25(3):141–3.

    CAS  PubMed  Google Scholar 

  43. Baccarani U, Adani GL, Sanna A, et al. Portal vein thrombosis after intraportal hepatocytes transplantation in a liver transplant recipient. Transpl Int. 2005;18(6):750–4.

    Article  PubMed  Google Scholar 

  44. Strom SC, Fisher RA, Thompson MT, et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation. 1997;63(4):559–69.

    Article  CAS  PubMed  Google Scholar 

  45. Jorns C, Nowak G, Nemeth A, Zemack H, Mörk LM, Johansson H, Gramignoli R, Watanabe M, Karadagi A, Alheim M, Hauzenberger D, van Dijk R, Bosma PJ, Ebbesen F, Szakos A, Fischler B, Strom S, Ellis E, Ericzon BG. De novo donor-specific HLA antibody formation in two patients with Crigler-Najjar syndrome type I following human hepatocyte transplantation with partial hepatectomy preconditioning. Am J Transplant. 2016;16(3):1021–30.

    Article  CAS  PubMed  Google Scholar 

  46. Soltys KA, Setoyama K, Tafaleng EN, Soto Gutiérrez A, Fong J, Fukumitsu K, Nishikawa T, Nagaya M, Sada R, Haberman K, Gramignoli R, Dorko K, Tahan V, Dreyzin A, Baskin K, Crowley JJ, Quader MA, Deutsch M, Ashokkumar C, Shneider BL, Squires RH, Ranganathan S, Reyes-Mugica M, Dobrowolski SF, Mazariegos G, Elango R, Stolz DB, Strom SC, Vockley G, Roy-Chowdhury J, Cascalho M, Guha C, Sindhi R, Platt JL, Fox IJ. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol. 2017;66(5):987–1000.

    Article  CAS  PubMed  Google Scholar 

  47. Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51(5):1754–65.

    Article  CAS  PubMed  Google Scholar 

  48. Espejel S, Roll GR, McLaughlin KJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120(9):3120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11(3):166–76.

    Article  CAS  PubMed  Google Scholar 

  50. Yee ML, Tan HH. Use of everolimus in liver transplantation. World J Hepatol. 2017;9(23):990–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou J, Hu Z, Zhang Q, Li Z, Xiang J, Yan S, Wu J, Zhang M, Zheng S. Spectrum of De novo cancers and predictors in liver transplantation: analysis of the scientific registry of transplant recipients database. PLoS One. 2016;11(5):e0155179. https://doi.org/10.1371/journal.pone.0155179. eCollection 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol. 2015;5(1):69–80.

    Article  PubMed  Google Scholar 

  53. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 2015;43(3):577–92.

    Article  PubMed  Google Scholar 

  55. Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014;42(7):1517–27.

    Article  PubMed  Google Scholar 

  56. Alexandrova K, Griesel C, Barthold M, Heuft HG, Ott M, Winkler M, Schrem H, Manns MP, Bredehornsp T, Net M, MMI V, Kafert-Kasting S, Arseniev L. Large-scale isolation of human hepatocytes for therapeutic application. Cell Transplant. 2005;14(10):845–53.

    Article  PubMed  Google Scholar 

  57. Zhou P, Lessa N, Estrada DC. Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transpl. 2011;17(4):418–27.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Struecker B, Butter A, Hillebrandt K, Polenz D, Reutzel-Selke A, Tang P, Lippert S, Leder A, Rohn S, Geisel D, Denecke T, Aliyev K, Jöhrens K, Raschzok N, Neuhaus P, Pratschke J, Sauer IM. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11(2):531–41.

    Article  CAS  PubMed  Google Scholar 

  59. Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods. 2011;17(6):677–86. Epub 2011 Apr 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604–17.

    Article  CAS  PubMed  Google Scholar 

  61. Struecker B, Hillebrandt KH, Voitl R, Butter A, Schmuck RB, Reutzel-Selke A, Geisel D, Joehrens K, Pickerodt PA, Raschzok N, Puhl G, Neuhaus P, Pratschke J, Sauer IM. Porcine liver decellularization under oscillating pressure conditions: a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods. 2015;21(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  62. Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res. 2012;173(1):e11–25.

    Article  CAS  PubMed  Google Scholar 

  63. Verstegen MMA, Willemse J, van den Hoek S, Kremers GJ, Luider TM, van Huizen NA, Willemssen FEJA, Metselaar HJ, IJzermans JNM, van der Laan LJW, de Jonge J. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev. 2017;26(18):1304–15. https://doi.org/10.1089/scd.2017.0095. Epub 2017 Jul 31.

    Article  CAS  PubMed  Google Scholar 

  64. Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Pinzani M. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep. 2015;5:13079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Butter A, Aliyev K, Hillebrandt KH, Raschzok N, Kluge M, Seiffert N, Tang P, Napierala H, Muhamma AI, Reutzel-Selke A, Andreou A, Pratschke J, Sauer IM, Struecker B. Evolution of graft morphology and function after recellularization of decellularized rat livers. J Tissue Eng Regen Med. 2018;12(2):e807–16.

    Article  PubMed  Google Scholar 

  66. Bao J, Shi Y, Sun H, Yin X, Yang R, Li L, Chen X, Bu H. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 2011;20(5):753–66.

    Article  PubMed  Google Scholar 

  67. Hassanein W, Uluer MC, Langford J, Woodall JD, Cimeno A, Dhru U, Werdesheim A, Harrison J, Rivera-Pratt C, Klepfer S, Khalifeh A, Buckingham B, Brazio PS, Parsell D, Klassen C, Drachenberg C, Barth RN, JC LM. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis. 2017;13(1):16–27.

    Article  CAS  PubMed  Google Scholar 

  68. Collin de l’Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-regenerative transplantation: regrow and reset. Am J Transplant. 2016;16(6):1688–96.

    Article  PubMed  Google Scholar 

  69. Hussein KH, Park KM, Kang KS, Woo HM. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 2016;38:82–93.

    Article  CAS  PubMed  Google Scholar 

  70. Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C, Clouse C, Zhao W, Shupe TD, Soker S, Yoo JJ, Atala A. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials. 2015;40:72–9.

    Article  CAS  PubMed  Google Scholar 

  71. Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and Recellularization of rat livers with hepatocytes and endothelial progenitor cells. Artif Organs. 2016;40(3):E25–38.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, Li L, Bu H. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep. 2016;6:24779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bao J, Wu Q, Sun J, Zhou Y, Wang Y, Jiang X, Li L, Shi Y, Bu H. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep. 2015;5:10756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE, Am J. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol. 2013;183(2):558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanael Raschzok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raschzok, N., Hillebrandt, K.H., Sauer, I.M. (2019). Liver Assist Systems for Bridging to Transplantation: Devices and Concepts. In: Bezinover, D., Saner, F. (eds) Critical Care for Potential Liver Transplant Candidates. Springer, Cham. https://doi.org/10.1007/978-3-319-92934-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92934-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92933-0

  • Online ISBN: 978-3-319-92934-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics