Skip to main content

Algal Microbial Fuel Cells—Nature’s Perpetual Energy Resource

  • Chapter
  • First Online:
Microbial Fuel Cell Technology for Bioelectricity

Abstract

Environmental pollution and global warming are major threats to life on Earth. These drastic changes are caused by carbon dioxide emission, which has become a very serious problem worldwide. For the generation of useful sustainable and renewable energy in an efficient manner, the production of electricity using solar energy trapped by algae in combination with microbial fuel cells (MFCs) is a very attractive option. The use of different kinds of algae has become a recent research trend, especially because algae have great capacity to utilize carbon dioxide via photosynthesis, with the potential to convert it into a biomass. Integrating algae into MFCs has given rise to a new MFC model, that of photosynthetic MFCs. Algal MFCs play an extensive role in the treatment of organic contaminants that can be converted to bioelectricity and they also efficiently remove various by-products. This chapter provides- detailed descriptions of the basic experimental setup of MFCs, and the electrode materials used for anodes, cathodes, and membranes. Microbial fuel cells employing different types of algae as substrates under various conditions are described in detail. A brief description of special MFC designs that are integrated with PBR is given. Details of MFC models with algae-assisted anodes and cathodes are also supplied. The multiple bioreactor constructions that are employed to yield algal biomasses are discussed, along with the technologies that will have to be developed. Future challenges and perspectives are highlighted, and we describe research work that can be applied for the commercialization of algal MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54(8):9–15

    CAS  Google Scholar 

  • Badalamenti JP, Torres CI, Krajmalnik-Brown R (2013) Light-responsive current generation by phototrophically enriched anode biofilms dominated b green sulfur bacteria. Biotechnol Bioeng 110:1020–1027

    CAS  Google Scholar 

  • Badalamenti JP, Torres CI, Krajmalnik-Brown R (2014) Coupling dark metabolism to electricity generation using photosynthetic co cultures. Biotechnol Bioeng 111:223–231

    CAS  Google Scholar 

  • Barua PK, Deka D (2010) Electricity generation from biowaste based microbial fuel cells. Int J Energy Inform Commun 1:1

    Google Scholar 

  • Bombelli P et al (2011) Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ Sci 2011(4):4690–4698

    Google Scholar 

  • Cai P-J, Xiao X, He Y-R, Li W-W, Zang G-L, Sheng G-P et al (2013) Reactive oxygen species (ROS) generated by cyanobacteria act as an electron acceptor in the biocathode of a bio-electrochemical system. Biosens Bioelectron 39:306–310

    CAS  Google Scholar 

  • Cao X, Huang X, Boon N, Liang P, Fan M (2008) Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. Electrochem Commun 10:1392–1395

    CAS  Google Scholar 

  • Cao X, Huang X, Liang P, Boon N, Fan M, Zhanga L (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501

    CAS  Google Scholar 

  • Chandra R, Venkata Subhash G, Venkata Mohan S (2012) Mixotrophic operation of photo-bio electro catalytic fuel cell under an oxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresour Technol 109:46–56

    CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496

    Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006a) Carbon dioxide removal from air by microalgae cultured in a membrane-photo bioreactor. Sep Purif Technol 50:324–329

    CAS  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006b) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8(3):489–494

    CAS  Google Scholar 

  • Cho YK, Donohue TJ, Tejedor I, Anderson MA, McMahon KD, Noguera DR (2008) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104:640–650

    CAS  Google Scholar 

  • Christi Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Google Scholar 

  • Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4(11):2233

    CAS  Google Scholar 

  • Cui Y, Rashid N, Hu N, Rehman MSU, Han J-I (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680

    CAS  Google Scholar 

  • De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W (2008) Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb Biotechnol 1:446–462

    Google Scholar 

  • Del Campo AG, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645

    Google Scholar 

  • El Mekawy A, Hegab HM, Dominguez-Benetton X, Pant D (2013) Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities. Bioresour Technol 142:672–682

    CAS  Google Scholar 

  • El Mekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sust Energ Rev 39 (2014) 617–627

    Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41:2915–2921

    CAS  Google Scholar 

  • Fu C, Su C, Hung T, Hsieh C, Suryani D, Wu W (2009) Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour Technol 100:4183–4186

    CAS  Google Scholar 

  • Fu C, Hung T, Wu W, Wen T, Su C (2010) Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochem Eng J 52:175–180

    CAS  Google Scholar 

  • Gadhamshetty V, Belanger D, Gardiner C-J, Cummings A, Hynes A (2013) Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production. Bioresour Technol 127:378–385

    CAS  Google Scholar 

  • Gajda I, Greenman J, Melhuish C, Ieropoulos I (2013) Photosynthetic cathodes for microbial fuel cells. Int J Hydrog Energy 38:11559–11564

    CAS  Google Scholar 

  • Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system Biomass Bioenergy 82:87–93

    CAS  Google Scholar 

  • Ge Z, Zhang F, Grimaud J, Hurst J, He Z (2013) Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour Technol 136:509–514

    CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    CAS  Google Scholar 

  • Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT (2014) Effect of light on the production of bioelectricity and added-value micro algae biomass in a photo- synthetic alga microbial fuel cell. Bioresour Technol 154:171–177

    CAS  Google Scholar 

  • Gruning A, Beecroft NJ, Avignone-Rossa C (2014) Metabolic composition of anode community predicts electrical power in microbial fuel cells. Retrieved 1 January 2015 from: https://archive.org/details/biorxiv-10.1101-002337

  • Hai-ming, Jiang (2016) Combination of microbial fuel cells with microalgae cultivation for bioelectricity generation and domestic wastewater treatment. Environ Eng Sci 34:489–495

    Google Scholar 

  • He D, Bultel Y, Magnin J-P, Roux C, Willison JC (2005a) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. J Power Sources 141:19–23

    CAS  Google Scholar 

  • He Z, Minteer SD, Angenent LT (2005b) Electricity generation from artificial wastewater using an up flow microbial fuel cell. Environ Sci Technol 39:5262–5267

    CAS  Google Scholar 

  • He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganismsand heterotrophic bacteria. Environ Sci Technol 43(5):1648–1654

    CAS  Google Scholar 

  • He H, Zhou M, Yang J, Hu Y, Zhao Y (2013a) Simultaneous waste water treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell. Bioprocess Biosyst Eng 37:873–880

    Google Scholar 

  • He H, Zhou M, Yang J, Youshuang H, Zhao Y (2013b) Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell. Bioprocess Biosyst Eng 37:873–880 00449-013-1058-4

    Google Scholar 

  • He Z et al (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sust Energ Rev 37:550–559

    Google Scholar 

  • Heister E, Brunner EW, Dieckmann GR, Jurewicz I, Dalton AB (2013) Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl Mater Interfaces 5(6):1870

    CAS  Google Scholar 

  • Hur J, Lee B-M, Choi K-S, Min B (2014) Tracking the spectroscopic and chromatographic changes of algal derived organic matter in a microbial fuel cell. Environ Sci Pollut Res 21:2230–2239

    CAS  Google Scholar 

  • Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32(13):1228–1240

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:6348–6356

    Google Scholar 

  • Inglesby AE, Fisher AC (2012) Enhanced methane yields from an aerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated re circulation loop microbial fuel cell. Energy Environ Sci 5:7996–8006

    CAS  Google Scholar 

  • Inglesby AE, Beatty DA, Fisher AC (2012) Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: demonstration of application in microbial fuel cells. RSC Adv 2:4829–4838

    CAS  Google Scholar 

  • Jeon HJ, Seo K-w, Lee SH, Yang Y-H, Kumaran RS, Kim S, Hong SW, Choi YS, Kim HJ (2012) Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells. Bioresour Technol 109:308–311

    CAS  Google Scholar 

  • Jiang H, Luo S, Shi X, Dai M, Guo R (2013) A system combining microbial fuel cell with photo bioreactor for continuous domestic waste water treatment and bioelectricity generation. J Cent South Univ 20:488–494

    CAS  Google Scholar 

  • Juang DF, Lee CH, Hsueh SC (2012) Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresour Technol 123:23–29

    CAS  Google Scholar 

  • Kakarla R, Min B (2014) Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1223-4

    CAS  Google Scholar 

  • Karube I, Takeuchi T, Barnes DJ (1992) Modern biochemical engineering, vol 46. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kokabian B, Gude VG (2013) Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ Sci Processes Impact 15:2178–2185

    CAS  Google Scholar 

  • Kondaveeti S, Choi KS, Kakarla R, Min B (2014) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front Environ Sci Eng. 8:784–791. https://doi.org/10.1007/s11783-013-0590-4

    Google Scholar 

  • Kruzic AP, Kreissl JF (2009) Natural treatment and on site systems. Water Environ Res 81:1346–1360

    CAS  Google Scholar 

  • Kymakis E, Amaratunga GAJ (2002) Single wall carbon nanotube conjugated polymer photovoltaic devices. Appl Phys Lett 80(1):112

    CAS  Google Scholar 

  • Lakaniemi A-M, Tuovinen OH, Puhakka JA (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. BioEnerg Res 5:481–491

    CAS  Google Scholar 

  • Lan JC-W, Raman K, Huang C-M, Chang C-M (2013) The impact of mono chromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochem Eng J 78:39–43

    CAS  Google Scholar 

  • Lee Y-K (2004) Algal nutrition heterotrophic carbon nutrition. In: Richmond A (ed) Handb microalgal cult biotechnol appl phycol. Blackwell Publishing, Oxford, UK, p 116

    Google Scholar 

  • Li W-W, Han-Qing Y, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911

    CAS  Google Scholar 

  • Li Xiao EB, Young JA, Berges ZH (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46(20):11459–11466

    Google Scholar 

  • Lin C-C, Wei C-H, Chen C-I, Shieh C-J, Liu Y-C (2013) Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol 135:640–643

    CAS  Google Scholar 

  • Liu T, Rao L, Yuan Y, Zhuang L (2015) Bioelectricity generation in a microbial fuel cell with a self-sustainable photo cathode. Sci World J 2015:1–8

    Google Scholar 

  • Lobato J, del Campo AG, Fernández FJ, Cañizares P, Rodrigo MA (2013) Lagooning microbial fuel cells: a first approach by coupling electricity-producing micro-organisms and algae. Appl Energy 110:220–226

    CAS  Google Scholar 

  • Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665

    CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelter man P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(7):5181–5192

    CAS  Google Scholar 

  • Luimstra VM et al (2013) A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J Appl Phycol. https://doi.org/10.1007/s10811-013-0051-2

    Google Scholar 

  • Lyautey E, Cournet A, Morin S, Bouletreau S, Etcheverry L, Charcosset JY (2011) Electro activity of phototrophic river biofilms and constitutive cultivable bacteria. Appl Environ Microbiol 77:5394–5401

    CAS  Google Scholar 

  • Malik S, Drott E, Grisdela P, Lee J, Lee C, Lowy DA et al (2009) A self-assembling self-repairing microbial photo electro chemical solar cell. Energy Environ Sci 2:292–298

    CAS  Google Scholar 

  • McGowan JG, Connors S (2000) WINDPOWER: a turn of the century review. Annu Rev Energy Environ 25:147–197

    Google Scholar 

  • Mitra P, Hill GA (2011) Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative anode. Can J Chem Eng 90:1006–1010

    Google Scholar 

  • Mohan SV, Devi MP, Mohanakrishna G, Amarnath N, Babu ML, Sarma PN (2011) Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Bioresour Technol 102:1109–1117

    CAS  Google Scholar 

  • Morishima K, Yoshida M, Furuya A, Moriuchi T, Ota M, Furukawa Y (2007) Improving the performance of a direct photosynthetic/metabolic bio-fuel cell (DPBFC) using gene manipulated bacteria. J Micromech Microeng 17:S274–S279

    CAS  Google Scholar 

  • Mustakeem M et al (2015) Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew Sustain Energy 4:22

    Google Scholar 

  • Natarajan D, Van Nguyen T (2004) Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells. J Power Sources 135(1):95

    CAS  Google Scholar 

  • Nishio K, Hashimoto K, Watanabe K (2013) Light/electricity conversion by defined co cultures of Chlamydomonas and Geobacter. J Biosci Bioeng 115:412–417

    CAS  Google Scholar 

  • Oh S, Min B, Logan BE (2004) Cathode performances a factor in electricity generation in microbial fuel cells. Environ SciTechnol 38:4900–4904

    CAS  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae bacteria based systems that treat waste-water and produce biodiesel and chemical products within a bio refinery. Biotechnol Adv 30:1031–1046

    Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355

    CAS  Google Scholar 

  • Park DH, Zeikus JG (2009) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    Google Scholar 

  • Pisciotta JM, Zou Y, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91:377–385

    CAS  Google Scholar 

  • Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell. Bioresour Technol 100:269–274

    CAS  Google Scholar 

  • Powell EE, Mapiour ML, Evitts RW, Hill GA (2013) For multiple functionalities in microbial fuel cells. Bioprocess Biosyst Eng 36:1913–1921

    Google Scholar 

  • Qian F, Wang G, Li Y (2010) Solar-Driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett 10(11):4686-4691

    CAS  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    CAS  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    CAS  Google Scholar 

  • Raman K, Lan JC-W (2012) Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances. Appl Energy 100:100–105

    CAS  Google Scholar 

  • Ramanathan G, Birthous RS, Abirami D, Highcourt D (2011) Efficacy of marine microalgae as exoelectrogen in microbial fuel cell system for bioelectricity generation. World J Fish Marine Sci 3(1):79–87

    Google Scholar 

  • Rashid N et al (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457:91–94

    Google Scholar 

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195

    CAS  Google Scholar 

  • Reimers CE, Girguis P, Stecher HA, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    CAS  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180(2):683

    CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour Technol 100:4704–4710

    CAS  Google Scholar 

  • Rosenbaum M, Schroder U, Scholz F (2005a) In situ electro oxidation of photobiological hydrogen in a photo bioelectro chemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39:6328–6333

    CAS  Google Scholar 

  • Rosenbaum M, Schroder U, Scholz F (2005b) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68:753–756

    CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    CAS  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC (2011) A reviews on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311

    Google Scholar 

  • Schamphelaire D et al (2009) Revival of the biological sunlight to biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Google Scholar 

  • Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D (2013) Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic waste-water. Chem Eng J 228:1–11

    CAS  Google Scholar 

  • Sharma T, Mohana Reddy AL, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrog Energy 33(22):6749

    CAS  Google Scholar 

  • Silvaggi J (2016) Integration of microbial fuel cell with in algal bioreactor. UWM Research Foundation

    Google Scholar 

  • Singhvi P, Chhabra M (2013) Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell. J Bioremed Biodeg 4:5

    Google Scholar 

  • Strik DPBTB, Terlouw H, HVM H, CJN B (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668

    CAS  Google Scholar 

  • Subhadra BG, Edwards M (2011) Co product market analysis and water footprint of simulated commercial algal biorefineries. Appl Energy 88:3515–3523

    Google Scholar 

  • Subhash GV, Chandra R, Mohan SV (2013) Micro algae mediated bio-electro catalytic fuel cell facilitates bioelectricity generation through oxygenic photo mixotrophic mechanism. Bioresour Technol 136:644–653

    Google Scholar 

  • Thorne R, Hu H, Schneider K, Bombelli P, Fisher A, Peter LM, Dent A, Cameron PJ (2011) Porous ceramic anode materials for photo-microbial fuel cells. J Mater Chem 21(44):18055–18060

    CAS  Google Scholar 

  • Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076

    CAS  Google Scholar 

  • Walter XA, Greenman J, Ieropoulos IA (2013) Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. Algal Res 2:183–187

    Google Scholar 

  • Walter XA, Greenman J, Taylor B, Ieropoulos IA (2015) Microbial fuel cells continuously fuelled by untreated fresh algal biomass. Algal Res 11:103–107

    Google Scholar 

  • Wang X, Feng Y, Liu J, Lee H, Li C, Li N et al (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643

    CAS  Google Scholar 

  • Wang HY, Bernarda A, Huang CY, Lee DJ, Chang JS (2011) Micro-sized microbial fuel cell: a mini-review. Bioresour Technol 102(1):235

    CAS  Google Scholar 

  • Wang H, Liu D, Lu L, Zhao Z, Xu Y, Cui F (2012) Degradation of algal organic matter using microbial fuel cells and its association with trihalomethane precursor removal. Bioresour Technol 116:80–85

    CAS  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res:2014 https://doi.org/10.1016/j.algal.2014.02.001

    Google Scholar 

  • Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335

    CAS  Google Scholar 

  • Wu XY, Song TS, Zhu XJ, Wei P, Zhou CC (2013a) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Appl Biochem Biotechnol 171:2082–2092

    CAS  Google Scholar 

  • Wu XY, Song TS, Zhu XJ, Wei P, Zhou CC (2013b) Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Appl Biochem Biotechnol. https://doi.org/10.1007/s12013-013-0476-8

  • Winfield J et al (2012) Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresour Technol 110:245–250

    CAS  Google Scholar 

  • Winfield J et al (2013) Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess Biosyst Eng 36:1913–1921

    CAS  Google Scholar 

  • Xiao Z (2012) Renew Sustain Energy Rev 37:550–559

    Google Scholar 

  • Xiao L, Young EB, Berges JA, He Z (2014) Integrated photo-bio electrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    Google Scholar 

  • Xing DF, Zuo Y, Cheng SA, Regan JM, Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42:4146–4151

    CAS  Google Scholar 

  • Xu C, Poon K, Choi MMF, Wang R (2015) Using live algae at the anode of a microbial fuel cell to generate electricity. Environ Sci Pollut Res 22(20):15621–15635

    CAS  Google Scholar 

  • Yadav AK, Panda P, Rout P, Behara S, Patra AK, Nayak SK, Bag BP (2009) Entrapment of algae for wastewater treatment and bioelectricity generation in microbial fuel cell. XVIIth International Conference on Bioencapsulation, Groningen, Netherlands : 24–26,

    Google Scholar 

  • Yagishita T, Sawayama S, Tsukahara K, Ogi T (1997) Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Sol Energy 61(5):347–353

    CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photo autotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    CAS  Google Scholar 

  • You SJ, Zhao QL, Jiang JQ, Zhang JN (2006) Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. Chem Biochem Eng 20:407–412

    CAS  Google Scholar 

  • Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2011) Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J Hazard Mater 187(1–3):591–595

    CAS  Google Scholar 

  • Zhang F, Brastad KS, He Z (2011) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ Sci Technol 45(15):6690–6696

    CAS  Google Scholar 

  • Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427

    CAS  Google Scholar 

  • Zhou M, He H, Jin T, Wang H (2012) Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. J Power Sources 214:216–219

    CAS  Google Scholar 

  • Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioprocess Eng 104:939–946

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinavel, L., Jothinathan, D., Sivasankar, V., Agastian, P., Mylsamy, P. (2018). Algal Microbial Fuel Cells—Nature’s Perpetual Energy Resource. In: Sivasankar, V., Mylsamy, P., Omine, K. (eds) Microbial Fuel Cell Technology for Bioelectricity. Springer, Cham. https://doi.org/10.1007/978-3-319-92904-0_5

Download citation

Publish with us

Policies and ethics