Skip to main content

Tumor Angiogenesis

  • Chapter
  • First Online:

Abstract

In 1907, Goldman described the characteristics of tumor vessels including their dilatation, accelerated proliferation and irregular arrangement. In 1939, Ide et al. were the first to suggest that tumors release specific factors capable of stimulating the growth of blood vessels. In 1945, Algire and Chalkley were the first to appreciate that growing malignancies could continuously elicit new capillary growth from the host. They used a transparent chamber implanted in a cat’s skin to study the vasoproliferative reaction secondary to a wound or implantation of normal or neoplastic tissues. They showed that the vasoproliferative response induced by tumor tissues was more substantial and earlier than that induced by normal tissues or following a wound. They found that capillaries arose from the host and that endothelial proliferation appeared as early as 3 days after implantation, weheras in wounds it did not begin for 6 days. Moreover, differentiation of vessels in vessels into arterioles and venules was not evident and the authors believe that an oustainding characteristic of the tumor cells was its capacity to elicit continued growth of new capillaries from the host: “This characteristic of the tumor cell, rather than some hypothetical capacity for autonomous growth inherent within the cell, is, from the standpoint of the host, an important expression of neoplastic change”. They concluded that the growth of a tumor is closely connected to the development of an intrinsic vascular network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Algire GH, Chalkley HW (1945) Vascular reactions of mice to wound and to normal and neoplastic transplants. J Natl Cancer Inst 6:73–85

    Article  Google Scholar 

  • Aterton A (1977) Growth stimulation of endothelial cells by simultaneous culture with sarcoma 180 cells in diffusion chambers. Cancer Res 37:3619–3622

    Google Scholar 

  • Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38:237–248

    Article  CAS  PubMed  Google Scholar 

  • Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 79:597–618

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bergers G, Song S, Mayer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356

    PubMed  CAS  Google Scholar 

  • Brem S, Brem H, Folkman J et al (1976) Prolonged tumor dormancy by prevention of neovascularization in the vitreous. Cancer Res 36:2807–2812

    PubMed  CAS  Google Scholar 

  • Brem S, Gullino PM, Medina D (1977) Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 195:880–882

    Article  CAS  PubMed  Google Scholar 

  • Brem S, Jensen HM, Gullino PM (1978) Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer 41:239–244

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor growth and metastasis: an integrated view. Curr Mol Med 3:659–671

    Article  CAS  PubMed  Google Scholar 

  • Cao Y (2010) Angiogenesis: what can it offer for future medicine? Exp Cell Res 316:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  CAS  PubMed  Google Scholar 

  • Castellani P, Boris L, Caremolla A et al (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. American J Pathol 161:1695–1700

    Article  CAS  Google Scholar 

  • Cavallo T, Sade R, Folkman J et al (1972) Tumor angiogenesis: rapid induction of endothelial mitosis demonstrated by autoradiography. J Cell Biol 54:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallo T, Sade R, Folkman J et al (1973) Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. Am J Pathol 70:345–362

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chodak GW, Haudenschild C, Gittes RF et al (1980) Angiogenic activity as a marker of neoplastic and preneoplastic lesions of the human bladder. Ann Surg 192:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denekamp J, Hobson B (1982) Endothelial cell proliferation in experimental tumors. Br J Cancer 46:711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebos JM, Lee CR, Christensen JG et al (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A 104:17069–17074

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrman RL, Knoth M (1968) Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster cheek pouch studied by light and electron microscopy. J Natl Cancer Inst 41:1329–1341

    Google Scholar 

  • Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis. Therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) Whas is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  • Folkman J, Cotran R (1976) Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 16:207–248

    PubMed  CAS  Google Scholar 

  • Folkman J, Hochberg M (1983) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  Google Scholar 

  • Folkman MJ, Long DM, Becker FF (1963) Growth and metastasis of tumor in organ culture. Cancer 16:453–467

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Watson K, Ingber D et al (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61

    Article  CAS  PubMed  Google Scholar 

  • Gimbrone MA Jr, Gullino PM (1976a) Angiogenesis capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res 36:2611–2620

    PubMed  Google Scholar 

  • Gimbrone MA Jr, Gullino PM (1976b) Neovascularization induced by intraocular xenografts of normal, preneoplastic and neoplastic mouse mammary tissue. J Natl Cancer Inst 56:305–318

    Article  PubMed  Google Scholar 

  • Gimbrone MA Jr, Aster RH, Cotran RS et al (1969) Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 222:33–36

    Article  PubMed  Google Scholar 

  • Gimbrone MA Jr, Cotran RS, Folkman J (1974a) Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 60:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimbrone MA Jr, Cotran RS, Folkman J (1974b) Tumor growth and neovascularization: an experimental model using rabbit cornea. J Natl Cancer Inst 52:413–427

    Article  PubMed  Google Scholar 

  • Gimbrone MA, Leapman SB, Cotran RS et al (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136:261–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Gimbrone MA, Leapman S, Cotran RS et al (1973) Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 50:219–228

    Article  PubMed  Google Scholar 

  • Goldman E (1907) The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet 2:1236–1237

    Article  Google Scholar 

  • Greenblatt M, Shubik P (1968) Tumor angiogenesis: transfilter diffusion studied in the hamster by the transparent chamber technique. J Natl Cancer Inst 41:1111–1124

    Google Scholar 

  • Greene HSN (1941) Heterologous transplantation of mammalian tumors: I. The transfer of rabbit tumors to alien species. J Exp Med 73:461–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullino PM, Grantham FH (1961) Studies on the exchange of fluids between host and tumor. The blood flow of hepatomas and other tumors in rats and mice. J Natl Cancer Inst 27:1465–1491

    PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    Article  CAS  PubMed  Google Scholar 

  • Hu-Lowe DD, Zou HY, Grazzini ML et al (2008) Non-clinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinase 1, 2, 3. Clin Cancer Res 14:7272–7283

    Article  CAS  PubMed  Google Scholar 

  • Ide AG, Baker NH, Warren SL (1939) Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentg 32:891–899

    Google Scholar 

  • Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  • Kandell J, Bossy-Wetzel E, Radvanyi F et al (1991) Neovascularization is associated with switch to the export of bFGF in the multispep development of fibrosarcoma. Cell 66:1095–1104

    Article  Google Scholar 

  • Knighton D, Ausprunk D, Tapper D et al (1977) Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 35:347–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel P, Ulbricht U, Bohlen P et al (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624–6628

    PubMed  CAS  Google Scholar 

  • Lewis WH (1927) The vascular pattern of tumours. John Hopkins Hosp Bull 41:156–173

    Google Scholar 

  • McCulloch P, Choy A, Martin L (1995) Association between tumour angiogenesis and tumour cell shedding into effluent venous blood during breast cancer surgery. Lancet 346:1334–1335

    Article  CAS  PubMed  Google Scholar 

  • Melwin RM, Algire GH (1956) The role of graft and host vessels in vascularization of grafts of normal and neoplastic tissues. J Natl Cancer Inst 17:23–33

    Google Scholar 

  • Narayana A, Kelly P, Golfinos PJ et al (2008) Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg 110:173–180

    Article  Google Scholar 

  • Nordern AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity and patterns of recurrence. Neurology 70:779–787

    Article  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  • Padera TP, Kuo AH, Hoshida T et al (2008) Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Res 7:2272–2279

    CAS  Google Scholar 

  • Paez-Ribes M, Allen A, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:222–231

    Article  CAS  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  • Roskoski R Jr (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 356:323–328

    Article  CAS  PubMed  Google Scholar 

  • Saidi A, Hagedorn M, Allain N et al (2009) Combined targeting of interleukin 6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer 125:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Ladler P, Davies R et al (1989) The prognostic significance of tumor vascularity in intermediate thickness (0.76-4.0 mm) skin melanoma. Am J Pathol 133:419–423

    Google Scholar 

  • St Croix B, Ragio C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 18:1197–1202

    Article  Google Scholar 

  • Urbach F (1961) The blood suplly of tumors. In: Montagna W, Ellis RA (eds) Advances of biology of the skin. Pergamon Press, New York, pp 123–149

    Google Scholar 

  • Weidner N, Semple JP, Welch WR et al (1991) Tumor angiogenesis and metastasis– correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Folkman J, Pozza F et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast cancer. J Natl Cancer Inst 84:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Carroll PR, Flax J et al (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  PubMed Central  CAS  Google Scholar 

  • Weinstat-Saslow D, Steeg PS (1994) Angiogenesis and colonization in the tumor metastatc process: basic and applied advances. FASEB J 8:401–407

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Adnane L, Newell P et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    Article  CAS  PubMed  Google Scholar 

  • Xian X, Hakansson J, Stahlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribatti, D. (2018). Tumor Angiogenesis. In: Judah Folkman. Springer, Cham. https://doi.org/10.1007/978-3-319-92633-9_3

Download citation

Publish with us

Policies and ethics