Skip to main content

Interoperability Among Capture Devices for Fingerprint Presentation Attacks Detection

  • Chapter
  • First Online:
Handbook of Biometric Anti-Spoofing

Abstract

A fingerprint verification system is vulnerable to attacks led through the fingertip replica of an enrolled user. The countermeasure is a software/hardware module called fingerprint presentation attacks detector (FPAD) that is able to detect images coming from a real (live) and a spoof (fake) fingertip. We focused our work on the so-called software-based solutions that use a classifier trained with a collection of live and fake fingerprint images in order to determine the liveness level of a finger, that is, the probability that the submitted fingerprint image is not a replica. The chapter goal is to give an overview of FPAD systems by focusing on the problem of the interoperability among different capture devices. In other words, the FPAD performance variation arises when the capture device is substituted by another one, for example, due to upgrading reasons. After a brief summary of the main and most effective state-of-the-art approaches to feature extraction, we introduce the interoperability FPAD problem from the image captured by the fingerprint sensor to the impact on the related feature space and classifier. In particular, we take into account the so-called textural descriptors used for FPAD. We review the state of the art in order to see if and how this problem has been already treated. Finally, a possible solution is suggested and a set of experiments is done to investigate its effectiveness.

We thank Mikel Zurutuza who contributed to this research work during his visiting period for the Global Training Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://livdet.org/index.php.

References

  1. Erdoğmuş N, Marcel S (2014) Introduction, pp 1–11. Springer, London. https://doi.org/10.1007/978-1-4471-6524-8_1

    Article  Google Scholar 

  2. Willis D, Lee M (1998) Six biometric devices point the finger at security. Netw Comput 9(10):84–96 (1998). URL http://dl.acm.org/citation.cfm?id=296195.296211

  3. van der Putte T, Keuning J (2001) Biometrical fingerprint recognition: don’t get your fingers burned. In: Proceedings of the fourth working conference on smart card research and advanced applications on smart card research and advanced applications. Kluwer Academic Publishers, Norwell, pp 289–303. http://dl.acm.org/citation.cfm?id=366214.366298

    Chapter  Google Scholar 

  4. Matsumoto T, Matsumoto H, Yamada K, Hoshino S (2002) Impact of artificial “gummy” fingers on fingerprint systems, vol 26

    Google Scholar 

  5. Schuckers SA (2002) Spoofing and anti-spoofing measures. Inf Sec Tech Rep 7(4):56–62. https://doi.org/10.1016/S1363-4127(02)00407-7

    Article  Google Scholar 

  6. Yambay D, Ghiani L, Denti P, Marcialis GL, Roli F, Schuckers S (2012) Livdet 2011 - fingerprint liveness detection competition 2011. In: 2012 5th IAPR international conference on biometrics (ICB). IEEE, pp 208–215

    Google Scholar 

  7. Mura V, Ghiani L, Marcialis GL, Roli F, Yambay DA, Schuckers SA (2015) Livdet 2015 fingerprint liveness detection competition 2015. In: 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS). IEEE, pp 1–6

    Google Scholar 

  8. Jain AK, Flynn P, Ross AA (eds) Handbook of biometrics. Springer (2008). https://doi.org/10.1007/978-0-387-71041-9

    Google Scholar 

  9. Marasco E, Ross A (2014) A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput Surv 47(2):28:1–28:36. https://doi.org/10.1145/2617756

    Article  Google Scholar 

  10. Sousedik C, Busch C (2014) Presentation attack detection methods for fingerprint recognition systems: a survey. IET Biometr 3(4):219–233. https://doi.org/10.1049/iet-bmt.2013.0020

    Article  Google Scholar 

  11. Coli P, Marcialis GL, Roli F (2007) Vitality detection from fingerprint images: a critical survey. In: Advances in biometrics: international conference, ICB 2007, Seoul, Korea, August 27–29, 2007. Proceedings. Springer, Berlin, pp 722–731. https://doi.org/10.1007/978-3-540-74549-5-76

  12. Derakhshani R, Schuckers S, Hornak LA, O’Gorman L (2003) Determination of vitality from a non-invasive biomedical measurement for use in fingerprint scanners. Pattern Recogn 36:383–396

    Article  Google Scholar 

  13. Parthasaradhi STV, Derakhshani R, Hornak LA, Schuckers SAC (2005) Time-series detection of perspiration as a liveness test in fingerprint devices. IEEE Trans Syst Man Cybern Part C (Appl Rev) 35(3):335–343. https://doi.org/10.1109/TSMCC.2005.848192

    Article  Google Scholar 

  14. Coli P, Marcialis GL, Roli F (2006) Analysis and selection of features for the fingerprint vitality detection. Springer, Berlin, pp 907–915. https://doi.org/10.1007/11815921-100

  15. Jia J, Cai L, Zhang K, Chen D (2007) A new approach to fake finger detection based on skin elasticity analysis. Springer, Berlin, pp 309–318. https://doi.org/10.1007/978-3-540-74549-5_33

  16. Antonelli A, Cappelli R, Maio D, Maltoni D (2006) Fake finger detection by skin distortion analysis. IEEE Trans Inf Forensics Sec 1(3):360–373. https://doi.org/10.1109/TIFS.2006.879289

    Article  Google Scholar 

  17. Aditya Shankar Abhyankar SCS (2004) A wavelet-based approach to detecting liveness in fingerprint scanners. pp 5404 – 5404 – 9 (2004). https://doi.org/10.1117/12.542939

  18. Schuckers S, Abhyankar A (2004) Detecting liveness in fingerprint scanners using wavelets: results of the test dataset. Springer, Berlin, pp 100–110. https://doi.org/10.1007/978-3-540-25976-3_10

    Chapter  Google Scholar 

  19. Zhang Y, Tian J, Chen X, Yang X, Shi P (2007) Fake finger detection based on thin-plate spline distortion model. Springer, Berlin, pp 742–749. https://doi.org/10.1007/978-3-540-74549-5_78

  20. Tan B, Schuckers S (2006) Liveness detection for fingerprint scanners based on the statistics of wavelet signal processing. In: 2006 conference on computer vision and pattern recognition workshop (CVPRW’06), pp 26–26 (2006). https://doi.org/10.1109/CVPRW.2006.120

  21. Tan B, Schuckers SAC (2008) New approach for liveness detection in fingerprint scanners based on valley noise analysis 17(011):009

    Google Scholar 

  22. Nikam SB, Agarwal S (2008) Fingerprint anti-spoofing using ridgelet transform. In: 2008 IEEE second international conference on biometrics: theory, applications and systems, pp 1–6. https://doi.org/10.1109/BTAS.2008.4699347

  23. Nikam SB, Agarwal S (2008) Fingerprint liveness detection using curvelet energy and co-occurrence signatures. 2008 fifth international conference on computer graphics, imaging and visualisation, pp 217–222

    Google Scholar 

  24. Nikam SB, Agarwal S (2010) Curvelet-based fingerprint anti-spoofing. Signal, Image Video Process 4(1):75–87. https://doi.org/10.1007/s11760-008-0098-8

    Article  Google Scholar 

  25. Nikam SB, Agarwal S (2008) Texture and wavelet-based spoof fingerprint detection for fingerprint biometric systems. In: 2008 first international conference on emerging trends in engineering and technology, pp 675–680. https://doi.org/10.1109/ICETET.2008.134

  26. Nikam SB, Agarwal S (2008) Wavelet energy signature and glcm features-based fingerprint anti-spoofing. In: 2008 international conference on wavelet analysis and pattern recognition, vol 2, pp 717–723. https://doi.org/10.1109/ICWAPR.2008.4635872

  27. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3(6):610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  28. Tan B, Schuckers S (2010) Spoofing protection for fingerprint scanner by fusing ridge signal and valley noise. Pattern Recogn 43(8):2845–2857. https://doi.org/10.1016/j.patcog.2010.01.023

    Article  MATH  Google Scholar 

  29. Moon YS, Chen JS, Chan KC, So K, Woo KC (2005) Wavelet based fingerprint liveness detection. Electron Lett 41(20):1112–1113. https://doi.org/10.1049/el:20052577

    Article  Google Scholar 

  30. Chen Y, Jain A, Dass S (2005) Fingerprint deformation for spoof detection. In: Biometric symposium

    Google Scholar 

  31. Choi H, Kang R, Choi K, Kim J (2007) Aliveness detection of fingerprints using multiple static features. World academy of science, engineering and technology, vol 2

    Google Scholar 

  32. Abhyankar A, Schuckers S (2006) Fingerprint liveness detection using local ridge frequencies and multiresolution texture analysis techniques. In: 2006 international conference on image processing, pp 321–324. https://doi.org/10.1109/ICIP.2006.313158

  33. Marcialis GL, Roli F, Tidu A (2010) Analysis of fingerprint pores for vitality detection. In: 2010 20th international conference on pattern recognition, pp 1289–1292. https://doi.org/10.1109/ICPR.2010.321

  34. Marasco E, Sansone C (2010) An anti-spoofing technique using multiple textural features in fingerprint scanners. In: 2010 IEEE workshop on biometric measurements and systems for security and medical applications, pp 8–14. https://doi.org/10.1109/BIOMS.2010.5610440

  35. Galbally J, Alonso-Fernandez F, Fierrez J, Ortega-Garcia J (2012) A high performance fingerprint liveness detection method based on quality related features. Future Gener Comput Syst 28(1):311–321. http://dx.doi.org/10.1016/j.future.2010.11.024

    Article  Google Scholar 

  36. Gottschlich C, Marasco E, Yang AY, Cukic B (2014) Fingerprint liveness detection based on histograms of invariant gradients. In: IEEE international joint conference on biometrics, pp 1–7. https://doi.org/10.1109/BTAS.2014.6996224

  37. Marasco E, Wild P, Cukic B (2016) Robust and interoperable fingerprint spoof detection via convolutional neural networks. In: 2016 IEEE symposium on technologies for homeland security (HST), pp 1–6. https://doi.org/10.1109/THS.2016.7568925

  38. Frassetto Nogueira R, Lotufo R, Machado R (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Sec 11:1–1

    Article  Google Scholar 

  39. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  40. Mäenpää T, Pietikäinen M (2005) Texture analysis with local binary patterns. Handbook of pattern recognition and computer vision 3:197–216

    Article  Google Scholar 

  41. Heikkila J, Ojansivu V (2009) Methods for local phase quantization in blur-insensitive image analysis. In: International workshop on local and non-local approximation in image processing, 2009. LNLA 2009. IEEE, pp 104–111

    Google Scholar 

  42. Ghiani L, Marcialis GL, Roli F (2012) Fingerprint liveness detection by local phase quantization. In: 2012 21st international conference on pattern recognition (ICPR), pp 537–540

    Google Scholar 

  43. Chen J, Shan S, He C, Zhao G, Pietikainen M, Chen X, Gao W (2010) Wld: a robust local image descriptor. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720

    Article  Google Scholar 

  44. Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2013) Fingerprint liveness detection based on weber local image descriptor. In: 2013 IEEE workshop on biometric measurements and systems for security and medical applications, pp 46–50. https://doi.org/10.1109/BIOMS.2013.6656148

  45. Ghiani L, Hadid A, Marcialis GL, Roli F (2013) Fingerprint liveness detection using binarized statistical image features. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pp 1–6. https://doi.org/10.1109/BTAS.2013.6712708

  46. Kannala J, Rahtu E (2012) Bsif: Binarized statistical image features. In: 21st international conference on pattern recognition (ICPR) 2012. IEEE, pp 1363–1366

    Google Scholar 

  47. Jia X, Yang X, Zang Y, Zhang N, Dai R, Tian J, Zhao J (2013) Multi-scale block local ternary patterns for fingerprints vitality detection. In: 2013 international conference on biometrics (ICB), pp 1–6. https://doi.org/10.1109/ICB.2013.6612964

  48. Jia X, Yang X, Cao K, Zang Y, Zhang N, Dai R, Zhu X, Tian J (2014) Multi-scale local binary pattern with filters for spoof fingerprint detection. Inf Sci 268:91–102. https://doi.org/10.1016/j.ins.2013.06.041. http://www.sciencedirect.com/science/article/pii/S0020025513004787. (New sensing and processing technologies for hand-based biometrics authentication)

    Article  Google Scholar 

  49. Krizhevsky A, Sutskever I, Hinton G.E (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates, Inc., pp 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  50. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  51. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 539–546. https://doi.org/10.1109/CVPR.2005.202

  52. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR (2014). http://arxiv.org/abs/1409.1556

  53. Nogueira RF, de Alencar Lotufo R, Machado RC (2014) Evaluating software-based fingerprint liveness detection using convolutional networks and local binary patterns. In: 2014 IEEE workshop on biometric measurements and systems for security and medical applications (BIOMS) Proceedings, pp 22–29. https://doi.org/10.1109/BIOMS.2014.6951531

  54. Ghiani L, Mura V, Tuveri P, Marcialis GL (2017) On the interoperability of capture devices in fingerprint presentation attacks detection

    Google Scholar 

  55. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of fingerprint recognition, 2nd edn. Springer Publishing Company, Incorporated, Berlin

    Book  Google Scholar 

  56. Watson CI, Garris MD, Tabassi E, Wilson CL, Mccabe RM, Janet S, Ko K, User’s guide to nist biometric image software (nbis)

    Google Scholar 

  57. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27

    Article  Google Scholar 

  58. Ghiani L, Yambay DA, Mura V, Marcialis GL, Roli, F, Schuckers SAC (2017) Review of the fingerprint liveness detection (livdet) competition series. Image Vis Comput 58(C):110–128 (2017). https://doi.org/10.1016/j.imavis.2016.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierliugi Tuveri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuveri, P., Ghiani, L., Zurutuza, M., Mura, V., Marcialis, G.L. (2019). Interoperability Among Capture Devices for Fingerprint Presentation Attacks Detection. In: Marcel, S., Nixon, M., Fierrez, J., Evans, N. (eds) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-92627-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92627-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92626-1

  • Online ISBN: 978-3-319-92627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics