Skip to main content

Peculiarities of the Crystal-Chemical Structure of Spinel Ferrites Co x Fe3-xO4 (0.25 ≤ x ≤1) Obtained Under the Action of a Low-Temperature Contact Nonequilibrium Plasma

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

Abstract

Nanocrystalline powder of spinel ferrites Co x Fe3-xO4(0.25 ≤ x ≤1) was synthesized by coprecipitation methods followed by treatment with low-temperature contact nonequilibrium plasma (CNP). Structural characteristics of the samples were carried out using powder X-ray diffraction and Fourier-transform infrared (FTIR) spectroscopy. The cation distribution over tetrahedral and octahedral sites was evaluated by analyzing X-ray diffraction patterns using the Poix method. The results show the existence of samples in the form of a mixed-type spinel with a cubic structure. It was found that the distribution of cations and structural parameters strongly depends on the cation ratio. The vibrational modes of the octahedral and tetrahedral metal complex in the sample were studied using FTIR in the wave number ranging from 390 to 4000 cm−1. The observed absorption bands in this range confirm the spinel structure of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valenzuela R (2012) Novel applications of ferrites. Phys Res Int

    Article  Google Scholar 

  2. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  ADS  Google Scholar 

  3. Bellido E, Domingo N, Ojea-Jiménez I, Ruiz-Molina D (2012) Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8(10):1465–1491

    Article  Google Scholar 

  4. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122(26):6263–6267

    Article  Google Scholar 

  5. Mirgorod YA, Borshch NA, Fedosyuk VM, Yurkov GY (2012) The structure and magnetic properties of cobalt ferrite nanoparticles synthesized in a system of direct micelles of amphiphiles by means of ion flotoextraction. Russian J Phys Chem A, Focus Chem 86(3):418–423

    Article  ADS  Google Scholar 

  6. Kim GY, Jeon JH, Kim MH, Suvorov D, Choi SY (2013) Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties. Met Mater Int 19(6):1209

    Article  Google Scholar 

  7. Cross WB, Affleck L, Kuznetsov MV, Parkin IP, Pankhurst QA (1999) Self-propagating high-temperature synthesis of ferrites MFe 2 O 4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J Mater Chem 9(10):2545–2552

    Article  Google Scholar 

  8. Liu SR, Ji DH, Xu J, Li ZZ, Tang GD, Bian RR et al (2013) Estimation of cation distribution in spinel ferrites Co 1+ xFe 2− xO 4 (0.0< x<2.0) using the magnetic moments measured at 10K. J Alloys Compd 581:616–624

    Article  Google Scholar 

  9. Biswal D, Peeples BN, Peeples C, Pradhan AK (2013) Tuning of magnetic properties in cobalt ferrite by varying Fe+2 and Co+2 molar ratios. J Magn Magn Mater 345:1–6

    Article  ADS  Google Scholar 

  10. Nlebedim IC, Snyder JE, Moses AJ, Jiles DC (2012) Effect of deviation from stoichiometric composition on structural and magnetic properties of cobalt ferrite, CoxFe3−xO4 (x= 0.2 to 1.0). J Appl Phys 111(7):07D704

    Article  Google Scholar 

  11. Mozaffari M, Hadadian Y, Aftabi A, Moakhar MO (2014) The effect of cobalt substitution on magnetic hardening of magnetite. J Magn Magn Mater 354:119–124

    Article  ADS  Google Scholar 

  12. Da Silva SW, Melo TFO, Soler MAG, Lima ECD, Da Silva MF, Morais PC (2003) Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: a Raman spectroscopy investigation. IEEE Transact Magnet 39(5):2645–2647

    Article  ADS  Google Scholar 

  13. Slonczewski JC (1958) Origin of magnetic anisotropy in cobalt-substituted magnetite. Phys Rev 110(6):1341

    Article  ADS  Google Scholar 

  14. George M, Nair SS, Malini KA, Joy PA, Anantharaman MR (2007) Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J Phys D Appl Phys 40(6):1593

    Article  ADS  Google Scholar 

  15. Raghasudha M, Ravinder D, Veerasomaiah P (2013) Magnetic properties of Cr-substituted Co-ferrite nanoparticles synthesized by citrate-gel autocombustion method. J Nanostruct Chem 3(1):63

    Google Scholar 

  16. Sutka A, Mezinskis G (2012) Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci: 6(2):128–141

    Article  ADS  Google Scholar 

  17. Allaedini G, Tasirin SM, Aminayi P (2015) Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Inter Nano Lett 5(4):183–186

    Article  ADS  Google Scholar 

  18. Frolova L, Derimova A, Khlopytskyi A, Galivets Y, Savchenko M (2016) Investigation of phase formation in the system Fe2+/Co2+/O2/H2O. East Eur J Enterp Technol 6(83):55–59

    Google Scholar 

  19. Khorrami SA, Manuchehri QS (2013) Magnetic properties of cobalt ferrite synthesized by hydrothermal and Co-precipitation methods: a comparative study. J Appl Chem Res 7(3):15–23

    Google Scholar 

  20. Obara G, Yamamoto H, Tani M, Tokita M (2002) Magnetic properties of spark plasma sintering magnets using fine powders prepared by mechanical compounding method. J MagnMagnMater 239:464–467

    ADS  Google Scholar 

  21. Frolova LA, Pivovarov AA, Baskevich AS (2014) Structure and properties of nickel ferrites produced by glow discharge in the Fe2+–Ni2+–SO4 2––OH system. Russ J Appl Chem 87(8):1054–1059

    Article  Google Scholar 

  22. Major S, Kumar S, Bhatnagar M, Chopra KL (1986) Effect of hydrogen plasma treatment on transparent conducting oxides. Appl Phys Lett 49(7):394–396

    Article  ADS  Google Scholar 

  23. Sangmanee M, Maensiri S (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe 2 O 4) fabricated by electrospinning. Appl Phys A Mater Sci Process 97(1):167–117

    Article  ADS  Google Scholar 

  24. Lepeshev AA, Karpov IV, Ushakov AV, Nagibin GE, Dorozhkina EA, Karpova ON et al (2017) Structuring in fast-quenched ferrite compositions under plasma spraying. Tech Phys 62(6):911–914

    Article  Google Scholar 

  25. Choukourov A, Manukyan AS, Shutov DA, Rybkin VV (2016) Physico-chemical properties of dc current discharge plasma with liquid cathode. Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 59(12):4–16

    Google Scholar 

  26. Mazarío E, Herrasti P, Morales MP, Menéndez N (2012) Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 23(35):355708

    Article  Google Scholar 

  27. Frolova LA, Kushnerov OI, Shpatakova RV Synthesis and magnetic properties of cobalt ferrite nanoparticles prepared by contact low-temperature non-equilibrium plasma method. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering YSF-2017 (in press)

    Google Scholar 

  28. Kumar L, Kumar P, Narayan A, Kar M (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Inter Nano Lett 3(1):8

    Article  ADS  Google Scholar 

  29. Le Trong H, Presmanes L, De Grave E, Barnabé A, Bonningue C, Tailhades P (2013) Mössbauer characterisations and magnetic properties of iron cobaltites CoxFe3−xO4 (1≤ x≤ 2.46) before and after spinodal decomposition. J Magn Magn Mater 334:66–73

    Article  ADS  Google Scholar 

  30. Murray PJ, Linnett JW (1976) Cation distribution in the spinels CoxFe3− xO4. J Phys Chem Solids 37(11):1041–1042

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frolova, L.A., Pivovarov, O.A., Kushnerov, O.A., Tolstopalova, N.M. (2018). Peculiarities of the Crystal-Chemical Structure of Spinel Ferrites Co x Fe3-xO4 (0.25 ≤ x ≤1) Obtained Under the Action of a Low-Temperature Contact Nonequilibrium Plasma. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_5

Download citation

Publish with us

Policies and ethics