Skip to main content

Ni Addition Induced Changes in Structural, Magnetic, and Cationic Distribution of Zn0.75−xNi x Mg0.15 Cu0.1Fe2O4 Nano-ferrite

  • Conference paper
  • First Online:
Nanochemistry, Biotechnology, Nanomaterials, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 214))

Included in the following conference series:

Abstract

Ni added Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 (with x = 0.00–0.75) nanoparticles with Scherrer’s grain diameter (D) < 56.73 nm were prepared via sol-gel auto-combustion technique. The morphological and quantitative analysis of structural, magnetic properties was performed by X-ray diffraction (XRD), magnetic measurements, scanning electron microscope (SEM), and energy-dispersive X-ray analysis (EDAX). Lattice parameter (a) of Zn-Ni-Mg-Cu ferrite shows non-monotonic variation with Ni content. With Ni addition no changes are observed in the concentration of Mg2+ ions at tetrahedral A and octahedral B site. The calculated oxygen parameter (\( {u}^{\overline{4}3m} \)) values are greater than the ideal value (0.375) for Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 nano-ferrite revealing distortion in spinel structure. SEM images for x = 0.00 reveal the formation of non-connected spherical pores with pore size of 555.70 nm, 768.37 nm, and 1.30 μm. EDAX validates existence of all the elements (Zn, Ni, Mg, Cu, Fe, O) in the sample. Non-zero Y-K angles for Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 ferrite suggest presence of non-collinear spin structure on B site. Coercivity (H c) ranges between 8.95 and 136.39 Oe and increases linearly with nickel addition. Saturation magnetization (M s) increases from 23.47 to 69.78 Am2/kg for lower Ni content (0.00 ≤ x ≤ 0.45), and for higher Ni content (x > 0.45), M s reduces from 69.78 to 36.11 Am2/kg, ascribed to cationic diffusion from A to B or from B to A site in Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 nano-ferrite. The nature of the surface defects in the Ni-doped Zn-Mg-Cu ferrites has been described on the basis of antistructural modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang H, Ma Z, Zhou J et al (2000) Preparation and investigation of (Ni0.15Cu0.25Zn0.60)Fe1.96O4 ferrite with very high initial permeability from self-propagated powders. J Magn Magn Mater 213:304–308

    Article  ADS  Google Scholar 

  2. Reddy MP, Madhuri W, Ramana MV et al (2010) Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J Magn Magn Mater 322:2819–2823

    Article  ADS  Google Scholar 

  3. Reddy MP, Madhuri W, Balakrishnaiah G et al (2011) Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr Appl Phys 11:191–198

    Article  ADS  Google Scholar 

  4. Costa ACFM, Lula RT, Kiminami RHGA et al (2006) Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. J Mater Sci 41:4871–4875

    Article  ADS  Google Scholar 

  5. Dey C, Baishya K, Ghosh A et al (2017) Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater 427:168–174. https://doi.org/10.1016/j.jmmm.2016.11.024

    Article  ADS  Google Scholar 

  6. Tartaj P, Morales MP, Verdaguer SV et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  Google Scholar 

  7. Azad AM, Hedayati A, Rydn M et al (2013) Examining the Cu–Mn–O spinel system as an oxygen carrier in chemical looping combustion. Energy Technol 1:59–69

    Article  Google Scholar 

  8. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Article  Google Scholar 

  9. Ehrhardt H, Campbell SJ, Hofmann M (2002) Structural evolution of ball-milled ZnFe2O4. J Alloys Compd 339:255–260

    Article  Google Scholar 

  10. Sepelak V, Baabe D, Mienert D et al (2003) Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J Magn Magn Mater 257:377–386

    Article  ADS  Google Scholar 

  11. Ammar S, Jouini N, Fiévet F et al (2004) Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345:658–662

    Article  ADS  Google Scholar 

  12. Willard MA, Nakamura Y, Laughlin DE et al (1999) Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J Am Ceram Soc 82:3342–3346

    Article  Google Scholar 

  13. Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven-Netherlands, pp 148–149, 157

    Google Scholar 

  14. Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, Oxford, pp 502–504

    Google Scholar 

  15. Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55) Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38–42

    Article  ADS  Google Scholar 

  16. Sujatha C, Reddy KV, Babu KS et al (2013) Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J Magn Magn Mater 340:38–45

    Article  ADS  Google Scholar 

  17. Akther Hossain AKM, Biswas TS, Yanagida T et al (2010) Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites. Mater Chem Phys 120:461–467

    Article  Google Scholar 

  18. Varalaxmi N, Reddy NR, Ramana MV et al (2008) Stress sensitivity of inductance in NiMgCuZn ferrites and development of a stress insensitive ferrite composition for micro inductors. J Mater Sci Mater Electron 19:399–405

    Article  Google Scholar 

  19. Dar MA, Verma V, Gairola SP et al (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258:5342–5347

    Article  ADS  Google Scholar 

  20. Sujatha C, Reddy KV, Babu KS et al (2012) Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Physica B 407:1232–1237

    Article  ADS  Google Scholar 

  21. Sujatha C, Reddy KV, Babu KS et al (2013) Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J Phys Chem Solids 74:917–923

    Article  ADS  Google Scholar 

  22. Satalkar M, Kane SN, Ghosh A et al (2014) Synthesis and soft magnetic properties of Zn0.8-xNixMg0.1Cu0.1Fe2O4 (x = 0.0–0.8) ferrites prepared by sol-gel auto-combustion method. J Alloys Compd 615:S313–S316

    Article  Google Scholar 

  23. Kane SN, Satalkar M (2017) Correlation between magnetic properties and cationic distribution of Zn0.85-xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J Mater Sci 52:3467–3477

    Article  ADS  Google Scholar 

  24. Satalkar M, Kane SN, Kumaresavanji M et al (2017) On the role of cationic distribution in determining magnetic properties of Zn0.7-xNixMg0.2Cu0.1Fe2O4 nano ferrite. Mater Res Bull 91:14–21. https://doi.org/10.1016/j.materresbull.2017.03.021

    Article  Google Scholar 

  25. Rana MU, Misbah-ul-Islam, Abbas T (2003) Magnetic interactions in Cu-substituted manganese ferrites. Solid State Commun 126:129–133

    Article  ADS  Google Scholar 

  26. Topkaya R, Baykal A, Demir A (2013) Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res 15:1359–1376

    Article  Google Scholar 

  27. Bamzai KK, Kour G, Kaur B et al (2014) Preparation, and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCa x Fe2−xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J Mater 2014:1–8

    Article  Google Scholar 

  28. Mazen SA, Abu-Elsaad NI (2006) Structural and some magnetic properties of manganese-substituted lithium ferrites. J Magn Magn Mater 298:38–42

    Article  Google Scholar 

  29. Gadkari AB, Shinde TJ, Vasambekar PN (2010) Magnetic properties of rare earth ion (Sm3+) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J Magn Magn Mater 322:3823–3827

    Article  ADS  Google Scholar 

  30. Jadhav SA (2001) Magnetic properties of Zn-substituted Li–Cu ferrites. J Magn Magn Mater 224:167–172

    Article  ADS  Google Scholar 

  31. Kapse VD, Ghosh SA, Raghuwanshi FC et al (2009) Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Mater Chem Phys 113:638–644

    Article  Google Scholar 

  32. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252

    Article  Google Scholar 

  33. Qi X, Zhou J, Yue Z et al (2003) Permeability and microstructure of manganese modified lithium ferrite prepared by sol–gel auto-combustion method. Mater Sci Eng B 99:278–281

    Article  Google Scholar 

  34. Mohammed KA, Al-Rawas AD, Gismelseed AM et al (2012) Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407:795–804

    Article  ADS  Google Scholar 

  35. Alone ST, Shirsath SE, Kadam RH et al (2011) Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. J Alloys Compd 509:5055–5060

    Article  Google Scholar 

  36. Vegard L (1921) The constitution of mixed crystals and the space occupied by atoms. Z Phys 5:17–26

    Article  ADS  Google Scholar 

  37. Sharma R, Thakur P, Sharma P et al (2017) Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J Alloys Compd 704:7–17

    Article  Google Scholar 

  38. Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212

    Article  Google Scholar 

  39. Eloska E, Wolski W (1992) The evidence of Cdx 2+Fe1-x 3+[Ni2+ 1-xFe3+ 1+x]O4 cation distribution based on X-ray and mossbauer data. Phys Status Solidi (A) 132:K51–K56

    Article  ADS  Google Scholar 

  40. Cervinka L, Simsa Z (1970) Distribution of copper ions in some copper-manganese ferrites. J Phys B (Czechoslovakia) 20:470–474

    Article  ADS  Google Scholar 

  41. Tanna AR, Joshi HH (2013) Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. World Acad Sci Eng Technol 75:334–341

    Google Scholar 

  42. Pandit AA, More SS, Dorik RG et al (2003) Structural and magnetic properties of Co1+ySnyFe2–2y–xCrxO4 ferrite system. Bull Mater Sci 26:517–521

    Article  Google Scholar 

  43. Al-Hilli MF, Li S, Kassim KS (2012) Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. J Magn Magn Mater 324:873–879

    Article  ADS  Google Scholar 

  44. Alimuddin MH, Shirsath SE, Meena SS et al (2013) Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles. J Magn Magn Mater 341:148–157

    Article  ADS  Google Scholar 

  45. Hashim M, Meena SS, Kotnala RK et al (2014) Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5-xCoxFe2O4 nanocrystalline ferrite. J Magn Magn Mater 360:21–33

    Article  ADS  Google Scholar 

  46. Mustafa G, Islam MU, Zhang W et al (2015) Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 ferrites prepared by sol–gel method. J Magn Magn Mater 387:147–154

    Article  ADS  Google Scholar 

  47. Mohamed MB, Wahba AM, Heiba ZK (2015) Effect of Zn substitution on structural, magnetic, and electric properties of Ni1−xZnxFe1.78Al0.2Gd0.02O4 nanoparticles. J Supercond Nov Magn 28:3675–3683

    Article  Google Scholar 

  48. Sathishkumar G, Venkataraju C, Sivakumar K (2013) Magnetic and dielectric properties of cadmium substituted nickel cobalt nanoferrites. J Mater Sci Mater Electron 24:1057–1062

    Article  Google Scholar 

  49. Najmoddin N, Beitollahi A, Kavas H et al (2014) XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram Int 40:3619–3625

    Article  Google Scholar 

  50. Jadhav J, Biswas S, Yadav AK et al (2017) Structural and magnetic properties of nanocrystalline Ni-Zn ferrites: in the context of cationic distribution. J Alloys Compd 696:28–41

    Article  Google Scholar 

  51. Kurmude DV, Barkule RS, Raut AV et al (2014) X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J Supercond Nov Magn 27:547–553

    Article  Google Scholar 

  52. Tholkappiyan R, Vishista K (2015) Combustion synthesis of Mg–Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater Sci Semicond Process 40:631–642

    Article  Google Scholar 

  53. Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141

    Article  Google Scholar 

  54. Sun Y, Ji G, Zheng M et al (2010) Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem 20:945–952

    Article  Google Scholar 

  55. Rikukawa H (1982) Relationship between microstructures and magnetic properties of ferrites containing closed pores. IEEE Trans Magn 18:1535–1537

    Article  ADS  Google Scholar 

  56. Gao Z, Cui F, Zeng S et al (2010) A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property. Microporous Mesoporous Mater 132:188–195

    Article  Google Scholar 

  57. Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313–320

    Article  ADS  Google Scholar 

  58. Yafet Y, Kittel C (1952) Antiferromagnetic arrangements in ferrites. Phys Rev 87:290–294

    Article  ADS  Google Scholar 

  59. Raghuvanshi S, Mazaleyrat F, Kane SN (2018) Mg1-xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv 8:047804–047810

    Article  ADS  Google Scholar 

  60. Faraz A, Maqsood A (2012) Synthesis, structural, electrical, magnetic Curie temperature and Y–K angle studies of Mn–Cu–Ni mixed spinel nanoferrites. J Supercond Nov Magn 25:509–517

    Article  Google Scholar 

  61. Tatarchuk TR, Paliychuk ND, Bououdina M et al (2018) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd 731:1256–1266. https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  Google Scholar 

  62. Tatarchuk T, Bououdina M, Macyk W et al (2017) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12(1):141–151. https://doi.org/10.1186/s11671-017-1899-x

    Article  ADS  Google Scholar 

  63. Tatarchuk T, Bououdina M, Paliychuk N et al (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791. https://doi.org/10.1016/j.jallcom.2016.10.067

    Article  Google Scholar 

  64. Ahmed MA, Hassan HE, Eltabey MM et al (2018) Mössbauer spectroscopy of MgxCu0.5−xZn0.5Fe2O4 (x=0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Phys B Condens Matter 530:195–200. https://doi.org/10.1016/j.physb.2017.10.125

    Article  ADS  Google Scholar 

  65. Kurta SA, Mykytyn IM, Tatarchuk TR (2014) Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina. Nanoscale Res Lett 9(1):357–365. https://doi.org/10.1186/1556-276X-9-357

    Article  ADS  Google Scholar 

  66. Tatarchuk T, Bououdina M, Vijaya JJ et al (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications. NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham, pp 305–325. https://doi.org/10.1007/978-3-319-56422-7_22

    Google Scholar 

Download references

Acknowledgments

This work is supported by projects 783/CST/R & D/Phy and, Engg Sc, CSR-IC/CRS-74/2014-15/2104. Authors thank Dr. Mukul Gupta and Mr. L. Behra, UGC-DAE Consortium for Scientific Research, Indore, for performing XRD measurements. Authors express their gratitude to Dr. Shibu. M. Eapen, scientist-in-charge, STIC, Kochi (India), for providing SEM measurements.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Satalkar, M., Kane, S.N., Tatarchuk, T., Araújo, J.P. (2018). Ni Addition Induced Changes in Structural, Magnetic, and Cationic Distribution of Zn0.75−xNi x Mg0.15 Cu0.1Fe2O4 Nano-ferrite. In: Fesenko, O., Yatsenko, L. (eds) Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-92567-7_23

Download citation

Publish with us

Policies and ethics