Skip to main content

Mobility and Locomotion

  • Chapter
  • First Online:
Ecomorphology of Cyclorrhaphan Larvae (Diptera)

Part of the book series: Zoological Monographs ((ZM,volume 4))

  • 335 Accesses

Abstract

Movement of both the whole body and individual components is dealt with in this chapter. The aim is to show that movement is a source of diversity in cyclorrhaphan larvae and that characterising it simply in terms of creeping and crawling underestimates its specialised nature. In cyclorrhaphan larvae, Diptera groundplan states of leglessness and peristalsis are retained. These characteristics correlate probably to development taking place submerged in dense media where streamlining is an advantage. Films of movement in cyclorrhaphan larvae show that peristalsis is developed and specialisations correlate to an array of particular circumstances. Attachment structures that are critical to movement vary from spicules to suckers and larvae are able to tunnel, burrow, swim, dive, jump and traverse complex topographies such as plant surfaces. Larvae specialised for movement across plants have prehensile qualities and combine peristalsis with additional muscular movements and enhanced attachment capability involving grasping organs comprising segment modules, the head pump, sticky saliva and faeces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barraclough DA (1983) The biology and immature stages of some Sepedon snail-killing flies in Natal (Diptera: Sciomyzidae). Ann Natal Mus 25:293–317

    Google Scholar 

  • Bauer G (1986) Life-history strategy of Rhagoletis alternata (Diptera: Trypetidae), a fruit fly operating in a ‘non-interactive’ system. J Anim Ecol 55:785–794

    Article  Google Scholar 

  • Berg CO (1953) Sciomyzid larvae (Diptera) that feed on snails. J Parasitol 39:630–636

    Article  CAS  Google Scholar 

  • Berrigan D, Leighton JRB (1993) Bioenergetic and kinematic consequences of limblessness in larval Diptera. J Exp Biol 179:245–259

    CAS  PubMed  Google Scholar 

  • Berrigan D, Pepin DJ (1995) How maggots move: allometry and kinematics of crawling in Larval Diptera. J Insect Physiol 41:329–337

    CAS  Google Scholar 

  • Bolwig N (1946) Sense and sense organs of the anterior end of the house fly larvae. Vidensk Medd Dan Natarhist Foren 109:81–217

    Google Scholar 

  • Bounduriansky R (2002) Leaping behaviour and responses to moisture and sound in larvae of piophilid flies. Can Entomol 134:647–656

    Article  Google Scholar 

  • Burtt E, Jackson CHN (1951) Illustrations of Tsetse Larvae. Bull Entomol Res 41:523–527

    Article  Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Book  Google Scholar 

  • Chandler AEF (1969) Locomotory behaviour of first instar larvae of aphidophagous Syrphidae (Dipt.) after contact with aphids. Anim Behav 17:673–678

    Article  Google Scholar 

  • Cobb M (1999) What and how do maggots smell? Biol Rev 74:425–459

    Article  Google Scholar 

  • Courtney GW, Sinclair BJ, Meier R (2000) Morphology and terminology of Diptera larvae. In: Papp L, Darvas B (eds) Contributions manual Palaearctic Diptera, vol 1. Science Herald, Budapest, pp 85–161

    Google Scholar 

  • Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomonograph 8:1–907

    Google Scholar 

  • Frew JGH (1923) On the larval anatomy of the gout fly of barley (Chlorops taeniopus Meig.) and two related acalypterate muscids, with notes on their winter host plants. Proc Zool Soc London:783–821

    Google Scholar 

  • Godoy-Herrera R, Alareon M, Caceres H, Loyola I, Navarrete I, Vega JL (1992) The development of photoresponse in Drosophila melanogaster larvae. Rev Chil Hist Nat 65:91–10

    Google Scholar 

  • Green CH, Burnet B, Connolly KJ (1983) Organisation and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae. Anim Behav 31:282–291

    Article  Google Scholar 

  • Greenberg B (1990) Behavior of postfeeding larvae of some Calliphoridae and a Muscid (Diptera). Ann Entomol Soc Am 83:1210–1214

    Article  Google Scholar 

  • Grossfield J (1978) Non-sexual behavior of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2B. Academic, New York, pp 1–126

    Google Scholar 

  • Günther MN, Nettesheim G, Shubeita GT (2016) Quantifying and predicting Drosophila larvae crawling phenotypes. Sci Rep 10:1–10. https://doi.org/10.1038/srep27972

    Article  CAS  Google Scholar 

  • Hartley JC (1963) The cephalopharyngeal apparatus of syrphid larvae and its relationship to other Diptera. Proc Zool Soc Lond 141:261–280

    Article  Google Scholar 

  • Heckscher ES, Lockery SR, Doe CQ (2012) Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurosci 32:12460–12471

    Article  CAS  Google Scholar 

  • Hering EM (1951) Biology of the leaf miners. Dr W Junk, The Hague

    Book  Google Scholar 

  • Hewitt CG (1914) On the predaceous habits of Scatophaga: a new enemy of Musca domestica. Can Entomol 46:2–3

    Article  Google Scholar 

  • Hinton HE (1955) On the structure, function and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory. Trans R Ent Soc Lond 106:455–534

    Article  Google Scholar 

  • Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 17:2105–2116

    Article  CAS  Google Scholar 

  • Keilin D (1915) Recherches sur les larves de Dipteres Cyclorrhaphes. Bull Sci Fr Bel 49:15–198

    Google Scholar 

  • Kohsaka H, Okusawa S, Itakura Y, Fushiki A, Nose A (2012) Development of larval motor circuits in Drosophila. Develop Growth Differ 54:408–419

    Article  CAS  Google Scholar 

  • Lahiri S, Shen K, Klein M, Tang A, Kane E, Gershow M, Garrity P, Samuel ADT (2011) Two alternating motor programs drive navigation in Drosophila larva. PLoS One 6:e23180

    Article  CAS  Google Scholar 

  • Laska P (1999) The air suction through mouths of Episyrphus balteatus larvae (Diptera, Syrphidae). Dipterol Bohemoslov 9:125–126

    Google Scholar 

  • Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ (2003) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6:267–273

    Article  CAS  Google Scholar 

  • MacGowan I, Rotheray GE (2008) British Lonchaeidae (Diptera, Cyclorrhapha, Acalyptratae). Handbks Ident Br Insects 10:1–142

    Google Scholar 

  • Maitland D (1992) Locomotion by jumping in the Mediterranean fruit fly larva Ceratitis capitata. Nature (London) 355:159–161

    Article  Google Scholar 

  • Marinov M, Li D, Bennett S (2015) An observation of leaping behaviour in larvae of Drosophilidae (Diptera). Weta 50:30–37

    Google Scholar 

  • Mathis WN, Hogue CL (1986) Description of a new species of the shore fly genus Diedrops (Diptera: Ephydridae) from Colombia. Contribs Sci 377:21–26

    Google Scholar 

  • McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (1981) Manual of Nearctic Diptera, Research Branch. Agriculture Canada Monograph No. 27, vol 1

    Google Scholar 

  • McNeill AR (1992) Exploring biomechanics: animals in motion. Freeman, New York, NY/Oxford

    Google Scholar 

  • Medler JT, Adenuga AO (1969) Observations on larvae of Leucophenga proxima Adams (Diptera: Drosophilidae) living in spittle-masses of Ptyelus grossus (Hemiptera: Cercopidae). Bull Ent Soc Nigeria 2:51–53

    Google Scholar 

  • Meier R (1995) Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst Entomol 20:99–128

    Article  Google Scholar 

  • Menees JH (1962) The skeletal elements of the gnathocephalon and its appendages in the larvae of higher Diptera. Ann Entomol Soc Am 55:607–616

    Article  Google Scholar 

  • Neugart C, Schneeberg K, Beutel RG (2009) The morphology of the larval head of Tipulidae (Diptera, Insecta) - the dipteran groundplan and evolutionary trends. Zool Anz 248:213–235

    Article  Google Scholar 

  • Nye IWB (1958) The external morphology of Dipterous larvae occurring in the Gramineae of Britain. Trans R Ent Soc Lond 110:411–487

    Article  Google Scholar 

  • Oppliger FY, Guerin PM, Vlimant M (2000) Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J Insect Physiol 46:135–144

    Article  CAS  Google Scholar 

  • Roberts MJ (1969) Structure of the mouthparts of the larvae of the flies Rhagio and Sargus in relation to feeding habits. J Zool (Lond) 159:381–398

    Article  Google Scholar 

  • Roberts MJ (1971) The structure of the mouthparts of some calypterate dipteran larvae in relation to their feeding habits. Acta Zool 52:171–188

    Article  Google Scholar 

  • Rotheray GE (1988) Morphology and feeding behaviour of the leaf-mining larva of Cheilosia semifasciata (Diptera: Syrphidae). J Nat Hist 22:865–873

    Article  Google Scholar 

  • Rotheray GE (2012) Morphology of the puparium and breeding sites of eight species of Heleomyzidae (Diptera). J Nat Hist 46:2075–2102

    Article  Google Scholar 

  • Rotheray GE (2014) Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900:50–76

    Article  Google Scholar 

  • Rotheray GE, Gilbert FS (1989) The phylogeny and systematics of European predacious Syrphidae (Diptera) based on larval and puparial stages. Zool J Linnean Soc 95:29–70

    Article  Google Scholar 

  • Rotheray GE, Gilbert F (1999) Phylogeny of Palaearctic Syrphidae (Diptera): evidence from larval stages. Zool J Linnean Soc 127:1–112

    Article  Google Scholar 

  • Rotheray GE, Gilbert F (2008) Phylogenetic relationships and the larval head of the lower Cyclorrhapha (Diptera). Zool J Linnean Soc 153:287–323

    Article  Google Scholar 

  • Rotheray GE, Hewitt S (2015) Development site, feeding mode and early stages of Palloptera scutellata (Macquart) (Diptera, Pallopteridae). Dipt Digest 22:157–170

    Google Scholar 

  • Rotheray GE, Horsfield D (2013) Development sites and early stages of eleven species of Clusiidae (Diptera) occurring in Europe. Zootaxa 3619:401–427

    Article  Google Scholar 

  • Rotheray GE, Lyszkowski R (2015) Diverse mechanisms of feeding and movement in Cyclorrhaphan larvae (Diptera). J Nat Hist 49:2139–2211

    Article  Google Scholar 

  • Rotheray GE, Wilkinson G (2015) Trophic structure and function in the larva of predatory muscid flies (Diptera, Muscidae). Zoomorphology 134:553–563

    Article  Google Scholar 

  • Rotheray GE, Zumbado M, Hancock EG, Thompson FC (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Studia Dipterol 7:385–398

    Google Scholar 

  • Rotheray GE, Chandler PJ, Gilbert F (2004) Final stage larvae and puparia of Platypezidae (Diptera). Insect Syst Evol 35:79–105

    Article  Google Scholar 

  • Rotheray GE, Hancock EG, Marcos-Garcia M (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zool J Linnean Soc 150:267–317

    Article  Google Scholar 

  • Rupp L (1989) Die mitteleuropäische Arten der Gattung Volucella (Diptera, Syrphidae) als Kommensalen und Parasitoide in den Nestern von Hummeln und sozialen Wespen: Untersuchungen zur Wirtsfindung, Larvalbiologie und Mimikry. Unpublished PhD Thesis, Albert Ludwigs Universität, Freiburg, Germany

    Google Scholar 

  • Sawin EP, Harris LR, Campos AR, Sokolowski MB (1994) Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (Diptera: Drosophilidae). J Insect Behav 7:553–567

    Article  Google Scholar 

  • Schneeberg K, Beutel RG (2014) The evolution of head structures in lower Diptera. Sci Open Res. https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.ALTCE1.v2

  • Schneider F (1968) Luftschhlucken ein wirksamer Schutz vor dem Ertrinkungstod bei Larven von Epistrophe balteata (Syrphidae Dipt). Mitt Schweiz Entomol Gesell 40:253–256

    Google Scholar 

  • Sherrington C (1906) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  • Simon MA, Woods WA Jr, Serebrenik YV, Simon SM, van Griethuijsen LI, Socha JJ, Lee WK, Trimmer BA (2010) Visceral-locomotory pistoning in crawling caterpillars. Curr Biol 20:1458 –1463

    Article  CAS  Google Scholar 

  • Sinclair BJ (1992) A phylogeneric interpretation of the Brachycera (Diptera) based on the larval mandible and associated mouthpart structures. Syst Entomol 17:233–252

    Article  Google Scholar 

  • Smart J (1937) On the larva and pupa of Drosophila gibbinsi Aub. Trans R Ent Soc Lond (B) 6:170–172

    Google Scholar 

  • Strong DR, Lawton JH, Southwood R (1984) Insects on plants. Community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Swammerdam J (1758) The book of nature; or, the history of insects (translated by T. Floyd in 1758). London, 153p

    Google Scholar 

  • Tanaka Y, Ito K, Nakagaki T, Kobayash R (2012) Mechanics of peristaltic locomotion and role of anchoring. J R Soc Interface 9:222–233

    Article  Google Scholar 

  • Teskey HJ (1981) Morphology and terminology – larvae. In: McAlpine J, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual Nearctic Diptera, vol 1, pp 65–88

    Google Scholar 

  • Tracey WD, Wilson RI, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273

    Article  CAS  Google Scholar 

  • Wang JW, Sylwester AW, Reed D, Wu DA, Soll DR, Wu CF (1997) Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis. J Neurogenet 11:231–254

    Article  CAS  Google Scholar 

  • Weise H (1938) Die atmung den larven und puppen der schwebfliegen aus der verwandtschaft der Eristalinae unter berücksichtigung ihrer metamorphose. Z Wiss Zool 151:467–514

    CAS  Google Scholar 

  • Wells M (1968) Lower animals. George Weidenfeld and Nicolson, London

    Google Scholar 

  • Wiley EP, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics, 2nd edn. Wiley and Blackwell, New York

    Book  Google Scholar 

  • Wilkinson G, Rotheray GE (2017) Melanostoma scalare (Meigen) larvae (Diptera, Syrphidae) feed on Diptera larvae in leaf litter. Dipt Digest 24:53–60

    Google Scholar 

  • Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–928

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rotheray, G.E. (2019). Mobility and Locomotion. In: Ecomorphology of Cyclorrhaphan Larvae (Diptera). Zoological Monographs, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-92546-2_4

Download citation

Publish with us

Policies and ethics