Skip to main content

Genomics-Based Barley Breeding

  • Chapter
  • First Online:
Book cover The Barley Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The creation of the first barley reference genome opens up new and improved avenues for the translation of genetics and genomics to application in plant breeding. Despite steady progress in barley breeding, there is still a great need for improved barley cultivars that provide raw materials for a wide array of products, are adapted to diverse growing conditions, and provide sustainable and profitable income for farmers. In this chapter, we investigate some of the major challenges in barley breeding and describe how our ever-increasing understanding of the barley genome has led to new methods and approaches to meet those challenges. There are several excellent reviews of barley breeding that detail progress in breeding over time (e.g., Friedt et al. 2010). Here, we will focus on how genetic tools and resources have affected progress so far and the prospects to utilize current and emerging genomic tools to sustain barley improvement. In particular, we explore the evolution of marker development for mapping, genomic approaches to selecting parent combinations and from within segregating breeding populations, exploiting diverse germplasm, tapping into genomic regions of limited recombination, and utilizing bioinformatic characterization of genetic load. Access to a complete reference genome is already providing breeders and geneticists information about candidate genes for QTL that are targets for marker-assisted selection, the physical order of genetically linked markers in regions explored by fine mapping, and the ultimate consensus map with which to compare mapping studies. Additional full genome sequences leading to a pan-genome for barley, refinement of the reference genome, and new tools to access, analyze, and utilize genomic information will foster further integration of genomics into barley improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad Naz A, Ehl A, Pillen K, Léon J (2012) Validation for root-related quantitative trait locus effects of wild origin in the cultivated background of barley (Hordeum vulgare L.). Plant Breed 3:392–398

    Article  Google Scholar 

  • Akdemir D, Sanchez JI, Jannink JL (2015) Optimization of genomic selection training populations with a genetic algorithm. Genet Sel Evol 47:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht T, Auinger HJ, Wimmer V, Ogutu JO, Knaak C, Ouzunova M, Piepho H-P, Schön CC (2014) Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl Genet 127(6):1375–1386

    Article  PubMed  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132

    Article  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink JL (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53(5):1894–1906

    Article  CAS  Google Scholar 

  • Barr AR, Jefferies SP, Warner P, Moody DB, Chalmers KJ, Langridge P (2000) Marker assisted selection in theory and practice. In: The 8th international barley genetics symposium Australia, 2000

    Google Scholar 

  • Barua UM, Chalmers KJ, Hackett CA, Thomas WTB, Powell W, Waugh R (1993) Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity 71(2):177–184

    Article  PubMed  CAS  Google Scholar 

  • Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas WTB, Waugh R (2017) Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci 8:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Beattie AD, Edney MJ, Scoles G, Rossnagel B (2010) Association mapping of malting quality data from Western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1662. https://doi.org/10.2135/cropsci2009.06.0334

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp p145–p162

    Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Minnesota

    Google Scholar 

  • Bernardo R (2017) Prospective targeted recombination and genetic gains for quantitative traits in maize. Plant Genome 10. https://doi.org/10.3835/plantgenome2016.11.0118

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P et al (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55(1):154–163

    Article  Google Scholar 

  • Biffen R (1907) Studies in the inheritance of disease-resistance. J Agric Sci 2:109–128

    Article  Google Scholar 

  • Bradbury P, Parker T, Hamblin MT, Jannink JL (2011) Assessment of power and false discovery rate in genome-wide association studies using the BarleyCAP germplasm. Crop Sci 51:52–59

    Article  Google Scholar 

  • Bringhurst TA (2015) 125th anniversary review: barley research in relation to Scotch whisky production: a journey to new frontiers. J Inst Brew 121:1–18. https://doi.org/10.1002/jib.192

    Article  Google Scholar 

  • Brøndum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, Lund MS (2015) Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. J Dairy Sci 98:4107–4116

    Article  PubMed  CAS  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Google Scholar 

  • Cahill DJ, Schmidt DH (2004) Use of marker-assisted selection in a product development breeding program. In: Fischer T (ed) New directions for a diverse planet. Proceedings of the 4th international crop science congress, Brisbane, QLD, Australia 26 Sept–1 Oct 2004

    Google Scholar 

  • Cakir M, Gupta S, Platz GJ, Ablett GA, Loughman R, Emebiri LC, Poulsen D, Li CD, Lance RCM, Galwey NW, Jones MGK (2003) Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.). Crop Pasture Sci 54:1369–1377

    Article  CAS  Google Scholar 

  • Canci PC, Nduulu LM, Dill-Macky R, Muehlbauer GJ, Rasmusson DC, Smith KP (2003) Genetic relationship between kernel discoloration and grain protein concentration in barley. Crop Sci 43(5):1671–1679

    Article  CAS  Google Scholar 

  • Canci PC, Nduulu LM, Muehlbauer GJ, Dill-Macky R, Rasmusson DC, Smith KP (2004) Validation of quantitative trait loci for Fusarium head blight and kernel discoloration in barley. Mol Breed 14:91–104. https://doi.org/10.1023/B:MOLB.0000037998.27661.58

    Article  CAS  Google Scholar 

  • Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  • Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137(1):81–94

    Article  CAS  Google Scholar 

  • Christopher J, Richard C, Chenu K, Christopher M, Borrell A, Hickey L (2015) Integrating rapid phenotyping and speed breeding to improve stay green and root adaptation of wheat in changing, water-limited, Australian environments. In: Edwards D, Oldroyd G (eds) Agriculture and climate change - adapting crops to increased uncertainty (vol 29). Procedia Environmental Sciences, pp 175–176. https://doi.org/10.1016/j.proenv.2015.07.246

  • Chun S, Fay JC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19:1553–1561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chutimanitsakun Y, Cuesta-Marcos A, Chao S, Corey A, Filichkin T, Fisk S, Kolding M, Meints B, Ong YL, Rey JI, Ross AS (2013) Application of marker-assisted selection and genome-wide association scanning to the development of winter food barley germplasm resources. Plant Breed 132(6):563–570

    Article  CAS  Google Scholar 

  • Close TJ, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10(1):582. https://doi.org/10.1186/1471-2164-10-582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WTB, Ramsay L, Mackay I, Balding DJ, Consortium TA, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. PNAS 107:21611–21616

    Google Scholar 

  • Cockram J, Jones H, Norris C, O’Sullivan DM (2012) Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theor Appl Genet 125 (8):1735–1749. https://doi.org/10.1007/s00122-012-1950-3

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392. https://doi.org/10.1038/ng.2447

    Article  PubMed  CAS  Google Scholar 

  • Combs E, Bernardo R (2013) Genomewide selection to introgress semidwarf maize germplasm into US corn belt inbreds. Crop Sci 53:1427–1436

    Article  Google Scholar 

  • Condon F, Gustus C, Rasmusson DC, Smith KP (2008) Effect of advanced cycle breeding on genetic diversity in barley breeding germplasm. Crop Sci 48(3):1027–1036. https://doi.org/10.2135/cropsci2007.07.0415

    Article  Google Scholar 

  • Condon F, Rasmusson DC, Schiefelbein E, Velasquez G, Smith KP (2009) Effect of advanced cycle breeding on genetic gain and phenotypic diversity in barley breeding germplasm. Crop Sci 49:1751–1761. https://doi.org/10.2135/cropsci2008.10.0585

    Article  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103(2–3):415–424

    Article  CAS  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99:811–818

    Article  CAS  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, Mohanty RG, Oyervides M, Buehler RE, Walker AK, Dobert R, Delannay X, Pershing JC, Hall MA, Lamkey KR (2006) Plant breeding: past, present, and future. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international symposium. Blackwell, Ames, pp 3–50

    Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724 https://doi.org/10.1534/genetics.110.118521

  • Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S et al (2011) Genomic selection and prediction in plant breeding. J Crop Improv 25:239–261

    Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, de los Campos G, Burgueño J, Windhausen VS, Buckler E, Jannink JL, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 3:1903–1926

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, Camacho-González JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.08.011

  • Cuesta-Marcos A, Igartua E, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szűcs P, Gracia MP, Lasa JM, Casas AM (2008) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed 21(4):455–471

    Article  Google Scholar 

  • Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterranean grown barley. Plant Breed 128(1):46–53

    Article  CAS  Google Scholar 

  • Cuesta-Marcos A, Szűcs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genom 11(1):707

    Article  CAS  Google Scholar 

  • Dahleen LS, Agrama HA, Horsley RD, Steffenson BJ, Schwarz PB, Mesfin A, Franckowiak JD (2003) Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor Appl Genet 108(1):95–104

    Article  PubMed  CAS  Google Scholar 

  • Dawson JC, Endelman JB, Heslot N, Crossa J, Poland J, Dreisigacker S, Manès Y, Sorrells ME, Jannink J-L (2013) The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crop Res 154:12–22

    Article  Google Scholar 

  • de la Peña RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Macky R, Somers DA, Rasmusson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    Article  PubMed  Google Scholar 

  • de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D (2013) Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet 9:e1003608

    Article  PubMed Central  CAS  Google Scholar 

  • del Pozo A, Castillo D, Inostroza L, Matus I, Mendez AM, Morcuende R (2012) Physiological and yield responses of recombinant chromosome substitution lines of barley to terminal drought in a Mediterranean-type environment. Ann Appl Biol 160(2):157–167. https://doi.org/10.1111/j.1744-7348.2011.00528

    Article  Google Scholar 

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798. https://doi.org/10.1093/jxb/ert477

    Article  PubMed  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155(2):617–627. https://doi.org/10.1104/pp.110.166249

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898

    Article  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15(4):395–407

    Article  CAS  Google Scholar 

  • Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. In: Proceedings of the 60th annual corn and sorghum seed research conference, 7–9 Dec 2005. American Seed Trade Association, Washington, DC

    Google Scholar 

  • Fehr WR (1991) Principles of cultivar development. Vol. 1. Theory and technique. Macmillan Publishing Company, London

    Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78(2):737–756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Hayes PM, Skinner JS, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map. Theor Appl Genet 108(4):670–680

    Article  PubMed  CAS  Google Scholar 

  • Friedt W, Horsley RD, Harvey BL, Poulsen DME, Lance RCM, Ceccarelli S, Grando S, Capettini F (2010) Barley breeding history, progress, objectives, and technology. In: Barley. Wiley-Blackwell, pp 160–220. https://doi.org/10.1002/9780470958636.ch8

  • Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine mapping of malting-quality QTL complex near the chromosome 4HS telomere in barley. Theor Appl Genet 109:750–760

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Bauer E (1993) RFLP mapping of the ym4 virus resistance gene in barley. Theor Appl Genet 86(6):689–693

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83(2):250–256

    Article  PubMed  CAS  Google Scholar 

  • Graner A, Foroughi-Wehr B, Tekauz A (1996) RFLP mapping of a gene in barley conferring resistance to net blotch (Pyrenophora teres). Euphytica 91:229–234

    CAS  Google Scholar 

  • Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the Barley Yellow Mosaic Virus Complex. Theor Appl Genet 98(2):285–290. https://doi.org/10.1007/s001220051070

    Article  CAS  Google Scholar 

  • Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116(4):529–539. https://doi.org/10.1007/s00122-007-0688-9

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome 4:256–272

    Article  Google Scholar 

  • Gutierrez L, German S, Pereyra S, Hayes PM, Perez CA, Capettini F, Locatelli A, Berberian NM, Falcioni E, Estrada R, Fros D, Gonza V, Altamirano H, Huerta-Espino J, Neyra E, Orjeda G, Sandoval-Islas S, Singh R, Turkington K, Castro AJ (2015) Multi-environment multi-QTL association mapping identifies disease resistance QTLs in barley germplasm from Latin America. Theor Appl Genet 128(3):501–516. https://doi.org/10.1007/s00122-014-2448-y

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3(6):427–437

    Article  CAS  Google Scholar 

  • Hartfield M, Otto SP (2011) Recombination and hitchhiking of deleterious alleles. Evolution 65:2421–2434. https://doi.org/10.1111/j.1558-5646.2011.01311.x Epub 2011 Apr 26

    Article  PubMed  Google Scholar 

  • Hayes P, Szűcs P (2006) Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci 103(49):18385–18386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Cogan NOI, Pembleton LW, Goddard ME, Wang J, Spangenberg GC, Forster JW (2013) Prospects for genomic selection in forage plant species (OA Rognli, ed). Plant Breed 132:133–143

    Google Scholar 

  • He S, Schulthess AW, Mirdita V et al (2016) Theor Appl Genet 129:641. https://doi.org/10.1007/s00122-015-2655-1

  • Hedley PE, Russell JR, Hein I, Booth A, Williamson S, Morris J, Lacomme C, Powell W (2005) Epiheterodendrin in malting barley: molecular evidence for cytochrome P450-mediated production. In: 2nd UK small grain cereals workshop, SCRI, Dundee, UK

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681

    Article  Google Scholar 

  • Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Heidlebaugh NM, Trethewey BR, Jukanti AK, Parrott DL, Martin JM, Fischer AM (2008) Effects of a barley (Hordeum vulgare) chromosome 6 grain protein content locus on whole-plant nitrogen reallocation under two different fertilisation regimes. Funct Plant Biol 35(7):619–632

    Article  CAS  PubMed  Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146

    Article  Google Scholar 

  • Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong SJ, Franklin F (2012) Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. Plant Cell 24:4096–4109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirota N, Kaneko T, Kuroda H, Kaneda H, Takashio M, Ito K, Takeda K (2005) Characterization of lipoxygenase-1 null mutants in barley. Theor Appl Genet 111(8):1580–1584. https://doi.org/10.1007/s00122-005-0088-y

    Article  PubMed  CAS  Google Scholar 

  • Hirota N, Kaneko T, Ito K, Takeda K (2006a) Mapping a factor controlling the thermostability of seed lipoxygenase-1 in barley. Plant Breed 125(3):231–235

    Article  CAS  Google Scholar 

  • Hirota N, Kuroda H, Takoi K, Kaneko T, Kaneda H, Yoshida I, Takashio M, Ito K, Takeda K (2006b) Development of novel barley with improved beer foam and flavor stability-the impact of lipoxygenase-1-less barley in the brewing industry. Tech Quarterly-Master Brewers Assoc Am 43(2):131–135

    CAS  Google Scholar 

  • Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3 6:2919–2928. https://doi.org/10.1534/g3.116.032532

  • Hofheinz N, Borchardt D, Weissleder K, Frisch M (2012) Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 125:1639–1645. https://doi.org/10.1007/s00122-012-1940-5

    Article  PubMed  Google Scholar 

  • Hofinger BJ, Russell JR, Bass CG, Baldwin T, Dos Reis M, Hedley PE, Li Y, Macaulay M, Waugh R, Hammond-Kosack KE (2011) An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol Ecol 20(17):3653–3668

    PubMed  CAS  Google Scholar 

  • Hoki T, Saito W, Hirota N, Shirai M, Kihara M, Rossnagel BG, Ichikawa S (2010) The outcomes of joint breeding program in Western Canada-the breeding of LOX-1-less malting barley variety ‘CDC-Polarstar’. In: 6th Canadian barley symposium proceedings, Saskatchewan, Canada, 2010

    Google Scholar 

  • Honsdorf N, March T, Hecht A, Eglinton J, Pillen K (2014) Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines. Mol Breed 34:1475. https://doi.org/10.1007/s11032-014-0131-2

    Article  CAS  Google Scholar 

  • Horsley RD, Schmierer D, Maier D, Kudrna D, Urrea CA, Steffenson BJ, Schwarz PB, Franckowiak JD, Green MJ, Zhang B, Kleinhofs A (2006) Identification of QTLs associated with Fusarium head blight resistance in barley accession CIho 4196. Crop Sci 46:145–156

    Article  CAS  Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Phil Trans R Soc B 360:1503–1511. https://doi.org/10.1098/rstb.2005.1670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147(3):1469–1485

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Li L, Smith KP, Muehlbauer GJ (2016) Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genom 17(1):387

    Article  CAS  Google Scholar 

  • Hung H-Y, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, Upadyayula N, Buckler ES, Flint-Garcia S, McMullen MD, Rocheford TR, Holland JB (2012) The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity 108:490. https://doi.org/10.1038/hdy.2011.103

    Article  PubMed  CAS  Google Scholar 

  • Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2014) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwata H, Jannink JL (2011) Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci 51(5):1915–1927

    Article  Google Scholar 

  • Jannink J-L, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    Article  PubMed  CAS  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, de los Campos G (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    Article  PubMed  Google Scholar 

  • Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122(1):52–56

    Article  CAS  Google Scholar 

  • Johnson GR (2004) Marker-assisted selection. Plant Breed Rev 24:293–301

    Google Scholar 

  • Johnson EB, Haggard JE, St. Clair DA (2012) Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 2(10):1145–1159. https://doi.org/10.1534/g3.112.003459

  • Jones H, Norris C, Smith D, Cockram J, Lee D, O’sullivan DM, Mackay Í (2013) Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theor Appl Genet 126(4):901

    Article  PubMed  CAS  Google Scholar 

  • Jukanti AK, Fischer AM (2008) A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Physiol Plant 132(4):426–439

    Article  PubMed  CAS  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177(2):333–349

    PubMed  CAS  Google Scholar 

  • Karsai I, Meszaros K, Hayes PM, Bedő Z (1997) Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley (Hordeum vulgare L.) under different photoperiod regimes. Theor Appl Genet 94(5):612–618

    Article  CAS  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedő Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110(8):1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80(2):137–142

    Article  PubMed  Google Scholar 

  • Kleinhofs A, Kilian A, Maroof MAS, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86(6):705–712

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He CF, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konishi T, Kawada N, Yoshida H, Sohtome K (1989) Linkage relationship between two loci for the Barley Yellow Mosaic resistance of Mokusekko 3 and esterase isozymes in barley (Hordeum vulgare L.). Jpn J Breed 39(4):423–430. https://doi.org/10.1270/jsbbs1951.39.423

  • Kono TJY, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, Smith KP, Tiffin P, Fay JC, Morrell PL (2016) The role of deleterious substitutions in crop genomes. Mol Biol Evol 33:2307–2317. https://doi.org/10.1093/molbev/msw102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168(1):435–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    Article  CAS  Google Scholar 

  • Krchov L, Gordillo GA, Bernardo R (2015) Multienvironment validation of the effectiveness of phenotypic and genomewide selection within biparental maize populations. Crop Sci 55:1068–1075. https://doi.org/10.2135/cropsci2014.09.0608

    Article  Google Scholar 

  • Kretschmer JM, Chalmers KJ, Manning S, Karakousis A, Barr AR, Islam AKMR, Logue SJ, Choe YW, Barker SJ, Lance RCM, Langridge P (1997) RFLP mapping of the Ha 2 cereal cyst nematode resistance gene in barley. Theor Appl Genet 94(8):1060–1064. https://doi.org/10.1007/s001220050515

    Article  CAS  Google Scholar 

  • Kuczynska A, Surma M, Adamski T (2007) Methods to predict transgressive segregation in barley and other self-pollinated crops. J Appl Genet 48:321–328

    Article  PubMed  Google Scholar 

  • Künzel G, Waugh R (2002) Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor Appl Genet 105:660–665

    Article  PubMed  CAS  Google Scholar 

  • Lacerenza JA, Parrott DL, Fischer AM (2010) A major grain protein content locus on barley (Hordeum vulgare L.) chromosome 6 influences flowering time and sequential leaf senescence. J Exp Bot 61(11):3137–3149. https://doi.org/10.1093/jxb/erq139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lado B, Gonzalez-Barrios P, Quincke M, Silva P, Gutierrez L (2016) Modelling genotype by environment interaction for genomic selection with unbalanced data from a wheat (Triticum aestivum L.) breeding program. Crop Sci 56:1–15. https://doi.org/10.2135/cropsci2015.04.0207

    Article  Google Scholar 

  • Lado B, Battenfield S, Guzman C, Quincke M, Singh RP, Dreisigacker S, Peña J, Fritz A, Poland J, Gutiérrez L (2017a) Strategies to select crosses using genomic prediction in two wheat breeding programs. Plant Genome. https://doi.org/10.3835/plantgenome2016.12.0128

    Article  PubMed  Google Scholar 

  • Lado B, Battenfield S, Guzman C, Quincke M, Singh RP, Dreisigacker S, Peña J, Fritz A, Poland J, Gutiérrez L (2017b) Strategies to select crosses using genomic prediction in two wheat breeding programs. Plant Genome. https://doi.org/10.3835/plantgenome2016.12.0128

    Article  PubMed  Google Scholar 

  • Lamb KE, Gonzalez-Hernandez JL, Zhang B, Green M, Neate SM, Schwarz PB, Horsley RD (2009) Identification of QTL conferring resistance to Fusarium head blight resistance in the breeding line C93–3230–24. Crop Sci 49:1675–1680. https://doi.org/10.2135/cropsci2008.11.0642

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  PubMed Central  CAS  Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1(4):389–395

    Article  CAS  Google Scholar 

  • Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Crop Pasture Sci 52:1043–1077

    Article  CAS  Google Scholar 

  • Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theor Appl Genet 107(6):1021–1027. https://doi.org/10.1007/s00122-003-1345-6

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Yamamoto T, Sasaki T et al (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021. https://doi.org/10.1007/s001220051576

    Article  CAS  Google Scholar 

  • Locatelli A, Cuesta-Marcos A, Gutierrez L, Hayes PM, Smith KP, Castro AJ (2013) Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Mol Breed 31(3):631–654

    Article  CAS  Google Scholar 

  • Longin CF, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3 3:481–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz AAJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci. https://doi.org/10.2135/cropsci2014.12.0827

    Article  Google Scholar 

  • Lorenz A, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120(1):151–161

    Article  PubMed  Google Scholar 

  • Lundqvist U, Lundqvist A (1987) An intermedium gene present in a commercial 6-row variety of barley. Hereditas 107(2):131–135

    Article  Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK, Lapitan NL (2000) Mapping of quantitative trait Loci for Fusarium head blight resistance in barley. Phytopathology 90(10):1079–1088 https://doi.org/10.1094/PHYTO.2000.90.10.1079

  • Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–238. https://doi.org/10.1007/s00122-010-1438-y

    Article  PubMed  CAS  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Visscher PM et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marulanda JJ, Mi X, Melchinger AE et al (2016) Theor Appl Genet 129:1901. https://doi.org/10.1007/s00122-016-2748-5

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Waugh R (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76(4):718–727. https://doi.org/10.1111/tpj.12319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505. https://doi.org/10.1111/tpj.12294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Wu S, Amand PS, Stein N, Poland J (2013c) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10):e76925. https://doi.org/10.1371/journal.pone.0076925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433. https://doi.org/10.1038/nature22043

    Article  PubMed  CAS  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27(4):439–454

    Article  Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66

    Article  CAS  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117(7):1077–1091

    Article  PubMed  Google Scholar 

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp spontaneum as a source of donor alleles in a Hordeum vulgare subsp vulgare background. Genome 46(6):1010–1023

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mejlhede N, Kyjovska Z, Backes G, Burhenne K, Rasmussen SK, Jahoor A (2006) EcoTILLING for the identification of allelic variation in the powdery mildew resistance genes mlo and Mla of barley. Plant Breed 125(5):461–467

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149(1):383–403

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mesfin A, Smith KP, Dill-Macky R, Evans CK, Waugh R, Gustus CD, Muehlbauer GJ (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci 43:307–318

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwissen T, Hayes B, Goddard M (2016) Genomic selection: a paradigm shift in animal breeding. Anim Front 6:6–14

    Article  Google Scholar 

  • Michel S, Ametz C, Gungor H, Epure D, Grausgruber H, Löschenberger F, Buerstmayr H (2016) Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor Appl Genet 129:1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Mickelson S, See D, Meyer FD, Garner JP, Foster CR, Blake TK, Fischer AM (2003) Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. J Exp Bot 54(383):801–812. https://doi.org/10.1093/jxb/erg084

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, Endelman JB, Nair S, Chao S, Jones SS, Muehlbauer GJ, Ullrich SE, Baik BK, Wise ML, Smith KP (2014) Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed 34(3):1229–1243

    Article  CAS  Google Scholar 

  • Mohammadi M, Tiede T, Smith KP (2015) PopVar: a genomewide procedure for predicting genetic variance and correlated response in bi-parental breeding populations. Crop Sci 55:2068–2077

    Article  CAS  Google Scholar 

  • Morell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    Article  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res-Fundam Mol Mech 1:2–9

    Article  Google Scholar 

  • Muñoz-Amatriaín M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129

    Article  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Cuesta-Marcos A, Endelman J, Comadran J, Bonman J, Bockelman H, Chao S, Russell J, Waugh R, Hayes P, Muehlbauer G (2014) The USDA collection of barley landraces and cultivars: genetic diversity, population structure, and potential for genome-wide association studies. PLoS One 14 9(4):394688

    Google Scholar 

  • Navara S, Smith KP (2014) Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis. Theor Appl Genet 127(3):633–645

    Article  PubMed  CAS  Google Scholar 

  • Nduulu LM, Mesfin A, Muehlbauer GJ, Smith KP (2007) Analysis of the chromosome 2(2H) region of barley associated with the correlated traits Fusarium head blight resistance and heading date. Theor Appl Genet 115:561–570

    Article  PubMed  CAS  Google Scholar 

  • Neyhart JL, Tiede T, Lorenz AJ, Smith KP (2017) Evaluating methods of updating training data in long-term genomewide selection. G3 1499–1510. https://doi.org/10.1534/g3.117.040550

  • Ng PC (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild × cultivated barley. Genetics 203(3):1453+. https://doi.org/10.1534/genetics.116.190736

  • Niebur WS, Rafalski JA, Smith OS, Cooper M (2004) Applications of genomics technologies to enhance rate of genetic progress for yield of maize within a commercial breeding program. In: Fischer T (ed) New directions for a diverse planet. Proceedings of 4th international crop science congress, Brisbane, QLD, Australia, 26 Sept–1 Oct 2004. The Regional Institute Ltd., Gosford, NSW, Australia

    Google Scholar 

  • Okada Y, Kanatani R, Arai S, Ito K (2004) Interaction between barley yellow mosaic disease-resistance genes rym1 and rym5, in the response to BaYMV strains. Breed Sci 54(4):319–325

    Article  CAS  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89(7):900–910

    PubMed  CAS  Google Scholar 

  • Paris M, Jones MGK, Eglinton JK (2002) Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Mol Biol Report 20(2):149–159. https://doi.org/10.1007/bf02799430

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln S, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335(721726):6170

    Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pauli D, Muehlbauer GJ, Smith KP, Cooper B, Hole D, Obert DE, Ullrich SE, Blake TK (2014) Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome 1 7(3)

    Google Scholar 

  • Paulitz TC, Steffenson BJ (2010) Biotic stress. In: Ullrich SE (ed). Barley: disease problems and solutions. Barley: production, improvement, and uses. Wiley-Blackwell, Oxford, UK. https://doi.org/10.1002/9780470958636.ch11

  • Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Schulze-Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430(7002):887–891

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012a) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012b) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113. https://doi.org/10.3835/plantgenome2012.06.0006

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Lindhout P (1997) Development of AFLP markers in barley. MGG 254(3):330–336. https://doi.org/10.1007/s004380050423

    Article  PubMed  CAS  Google Scholar 

  • Ragot M, Lee M (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In: Guimaraes EP et al (eds) Marker-assisted selection, current status and future perspectives in crops, livestock, forestry, and fish. FAO, Rome, pp 117–150

    Google Scholar 

  • Rajala A, Peltonen-Sainio P, Jalli M, Jauhiainen L, Hannukkala A, Tenhola-Roininen T, Ramsay L, Manninen O (2017) One century of Nordic barley breeding: nitrogen use efficiency, agronomic traits and genetic diversity. J Agric Sci 155(4):582–598. https://doi.org/10.1017/s002185961600068x

    Article  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich Sd, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156(4):1997–2005

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43(2):169–172

    Article  PubMed  CAS  Google Scholar 

  • Resende MFR, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2011) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624

    Article  PubMed  Google Scholar 

  • Richter K, Schondelmaier J, Jung C (1998) Mapping of quantitative trait loci affecting Drechslera teres resistance in barley with molecular markers. TAG Theor Appl Genet 97(8):1225–1234. https://doi.org/10.1007/s001220051014

    Article  CAS  Google Scholar 

  • Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848. https://doi.org/10.1007/s00122-013-2175-9

    Article  PubMed  CAS  Google Scholar 

  • Riggs T, Hayter A (1976) Practical aspects of the single seed descent method in barley breeding. In: Proceedings of the international barley genetics symposium

    Google Scholar 

  • Riggs TJ, Hanson PR, Start ND, Miles DM, Morgan CL, Ford MA (1981) Comparison of spring barley varieties grown in England and Wales between 1880 and 1980. J Agric Sci 97(DEC):599–610

    Google Scholar 

  • Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192(2):715–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romagosa I, Han F, Ullrich SE, Hayes PM, Wesenberg DM (1999) Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross. Mol Breed 5:143–152

    Article  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genom 274(5):515–527. https://doi.org/10.1007/s00438-005-0046-z

    Article  CAS  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2010) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink J-L, Sorrells ME (2015) Efficient use of historical data for genomic selection: a case study of stem rust resistance in wheat. Plant Genome 8. https://doi.org/10.3835/plantgenome2014.09.0046

  • Saade S, Maurer A, Shahid M, Oakey H, Schmockel SM, Negrao S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6. https://doi.org/10.1038/srep32586

  • Sallam AH, Smith KP (2016) Genomic selection performs similarly to phenotypic selection in barley. Crop Sci 56:2871–2881. https://doi.org/10.2135/cropsci2015.09.0557

    Article  CAS  Google Scholar 

  • Sameri M, Komatsuda T (2004) Identification of quantitative trait loci (QTLs) controlling heading time in the population generated from a cross between oriental and occidental barley cultivars (Hordeum vulgare L.). Breed Sci 54(4):327–332

    Article  CAS  Google Scholar 

  • Sarker A, Singh M (2015) Improving breeding efficiency through application of appropriate experimental designs and analysis models: a case of lentil (Lens culinaris Medikus subsp. culinaris) yield trials. Field Crops Res 179:26–34. https://doi.org/10.1016/j.fcr.2015.04.007

    Article  Google Scholar 

  • Sayed MA, Schumann H, Pillen K, Naz AA, Leon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13. https://doi.org/10.1186/1471-2156-13-61

  • Schmidt M, Kollers S, Maasberg-Prelle A, Großer J, Schinkel B, Tomerius A, Graner A, Korzun V (2016) Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet 129:203–213

    Article  PubMed  CAS  Google Scholar 

  • Schnell FW, Utz HF (1975) F1-leistung und elternwahl euphyder züchtung von selbstbefruchtern. In: Bericht über die Arbeitstagung der Vereinigung Österreichischer Pflanzenzüchter. BAL Gumpenstein, Gumpenstein, Austria

    Google Scholar 

  • Skadhauge B, Lok F, Breddam K, Olsen O, Bech LM, Knudsen S (2010) Barley with reduced lipoxygenase activity. Google Patents

    Google Scholar 

  • Skov Kristensen P, Dockter C, Lundqvist U, Lu Q, Gregersen PL, Thordal-Christensen H, Hansson M (2016) Genetic mapping of the barley lodging resistance locus Erectoides-k. Plant Breed 135(4):420–428. https://doi.org/10.1111/pbr.12377

    Article  CAS  Google Scholar 

  • Smith KP, Evans CK, Dill-Macky R, Gustus C, Xie W, Dong Y (2004) Host genetic effect on deoxynivalenol accumulation in Fusarium head blight of barley. Phytopathology 94(7):766–771. https://doi.org/10.1094/PHYTO.2004.94.7.766

    Article  PubMed  CAS  Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2009) Reducing dimensionality for prediction of genome-wide breeding values. Genet Sel Evol 41:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souza E, Sorrells ME (1991) Prediction of progeny variation in oat from parental genetic relationships. Theor Appl Genet 82:233–241. https://doi.org/10.1007/BF00226219

    Article  PubMed  CAS  Google Scholar 

  • Spaner D, Rossnagel BG, Legge WG, Scoles GJ, Eckstein PE, Penner GA, Tinker NA, Briggs KG, Falk DE, Afele JC, Hayes PM, Mather DE (1999) Verification of a quantitative trait locus affecting agronomic traits in two-row barley. Crop Sci 39:248–252

    Article  CAS  Google Scholar 

  • Steffenson BJ (2003) Fusarium head blight of barley: impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley, pp 241–295

    Google Scholar 

  • Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92(5):552–558. https://doi.org/10.1007/s001220050162

  • Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome 6. https://doi.org/10.3835/plantgenome2013.01.0001

  • Stracke S, Haseneyer G, Veyrieras J-B, Geiger HH, Sauer S, Graner A, Piepho H-P (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW (1992) Biochemical and molecular markers in plant breeding. Plant Breed Rev 9:37–61

    CAS  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Sci 39(6):1571–1583

    Article  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Google Scholar 

  • Swanston JS (1987) The consequences, for malting quality, of Hordeum laevigatum as a source of mildew resistance in barley breeding. Ann Appl Biol 110(2):351–355

    Article  Google Scholar 

  • Szűcs P, Blake VC, Bhat VR, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay LV, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:123–140

    Article  Google Scholar 

  • Szűcs P, Karsai I, von Zitzewitz J, Meszaros K, Cooper LLD, Gu YQ, Chen THH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Talame V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144(3):309–319

    Article  CAS  Google Scholar 

  • Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6(5):477–485

    Article  PubMed  CAS  Google Scholar 

  • Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R (2015) Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology 26 105(4):500–508

    Google Scholar 

  • Tanksley D (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134(2):585–596

    PubMed  PubMed Central  Google Scholar 

  • Tayeh N, Klein A, Le Paslier M-C, Jacquin F, Houtin H, Rond C, Chabert-Martinello M et al (2015) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941. https://doi.org/10.3389/fpls.2015.00941

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas W, Comadran J, Ramsay L, Shaw P, Marshall D, Newton A, O’Sullivan D, Cockram J, Mackay I, Bayles R, White J, Kearsey M, Luo Z, Wang M, Tapsell C, Harrap D, Werner P, Klose S, Bury P, Wroth J, Argillier O, Habgood R, Glew M, Bochard A-M, Gymer P, Vequaud D, Christerson T, Allvin B, Davies N, Broadbent R, Brosnan J, Bringhurst T, Booer C, Waugh R (2014) Project report No. 528: association genetics of UK elite barley (AGOUEB). HGCA. http://cereals.ahdb.org.uk/media/337662/pr528-final-project-report.pdf

  • Tiede T, Kumar L, Mohamadi M, Smith KP (2015) Predicting genetic variance in bi-parental breeding populations is more accurate when explicitly modeling the segregation of informative genomewide markers. Mol Breed. https://doi.org/10.1007/s11032-015-0390-6

    Article  Google Scholar 

  • Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96(1):123–131

    Article  CAS  Google Scholar 

  • Torkamaneh D, Laroche J, Bastien M, Abed A, Belzile F (2017) Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. BMC Bioinform 18(1):5. https://doi.org/10.1186/s12859-016-1431-9

    Article  CAS  Google Scholar 

  • Tyrka M, Perovic D, Wardyńska A, Ordon F (2008) A new diagnostic SSR marker for selection of theRym4/Rym5 locus in barley breeding. J Appl Genet 49(2):127–134. https://doi.org/10.1007/bf03195605

    Article  PubMed  Google Scholar 

  • van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8(3):187–195

    Article  Google Scholar 

  • Visscher PM, Haley CS, Knott SA (1996) Mapping QTLs for binary traits in backcross and F2 populations. Genet Res 68:55–63

    Article  Google Scholar 

  • von Zitzewitz J, Cuesta-Marcos A, Condon F, Castro AJ, Chao S, Corey A, Filichkin T, Fisk SP, Gutierrez L, Haggard K, Karsai I, Muehlbauer GJ, Smith KP, Veisz O, Hayes PM (2011) The genetics of winterhardiness in barley: perspectives from genome-wide association mapping. Plant Genome 4(1):76–91

    Article  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124(2):233–246

    Article  PubMed  Google Scholar 

  • Waugh R, Jannink J-L, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  PubMed  CAS  Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16(1):45–55

    Article  CAS  Google Scholar 

  • Wiberg A (1974) Genetical studies of spontaneous sources of resistance to powdery mildew in barley. Hereditas 77(1):89–148. https://doi.org/10.1111/j.1601-5223.1974.tb01357.x

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R, Muelbauer GJ (2006) Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci 46:1179–1186

    Article  Google Scholar 

  • Zhao Y, Gowda M, Liu W, Wurschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776

    Article  PubMed  Google Scholar 

  • Zhong S, Dekkers JC, Fernando RL, Jannink J-L (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Steffenson BJ, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127(6):1293–1304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99(7):1221–1232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, K.P., Thomas, W., Gutierrez, L., Bull, H. (2018). Genomics-Based Barley Breeding. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_16

Download citation

Publish with us

Policies and ethics