Skip to main content

Molecular Mapping and Cloning of Genes and QTLs

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The barley genome is comprised of more than 39,000 high-confidence genes, which represent many valuable targets for breeders as well as plant researchers trying to understand the genetic network controlling the various grass species, especially members of the Triticeae tribe including barley, wheat, and rye. The present chapter provides an overview of how past activities with barley mutants, markers, and genetic maps have laid the foundation for the present physical map based on the barley genome. We also describe how this new genome sequence resource can be integrated with mapping approaches to facilitate the cloning of genes and quantitative trait loci (QTL). Although the cost of genomic sequencing is likely to decrease, we assume that mapping of genes deficient in mutants will remain an important approach for gene identification. We present a comprehensive list of barley genes identified up to 2017.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Axelsson E, Lundqvist J, Sawicki A et al (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18:3606–3616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badr A, Muller K, Schafer-Pregl R et al (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  PubMed  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beier S, Himmelbach A, Colmsee C et al (2017) Construction of a map-based reference genome sequence for barley Hordeum vulgare L. Sci Data 4:170044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906

    Article  PubMed  CAS  Google Scholar 

  • Braumann I, Hansson M (2012) Barley plants with short culm. In: Danish Patent and Trademark Office, Denmark

    Google Scholar 

  • Brueggeman R, Druka A, Nirmala J et al (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970–14975

    Article  PubMed  PubMed Central  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulgarelli D, Biselli C, Collins NC et al (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS ONE 5

    Google Scholar 

  • Bull H, Casao CM, Zwirek M et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Commun 8:936

    Google Scholar 

  • Burton RA, Ma G, Baumann U et al (2010) A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol 153:1716–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, von Korff M (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199:1045–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172:1277–1285

    Article  PubMed  PubMed Central  Google Scholar 

  • Chono M, Honda I, Zeniya H et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Article  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616

    Article  PubMed  PubMed Central  Google Scholar 

  • Colas I, Macaulay M, Higgins JD et al (2016) A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution in the barley desynaptic mutant des10. New Phytol 212:693–707

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  PubMed  CAS  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715

    Article  PubMed  CAS  Google Scholar 

  • Dockter C, Gruszka D, Braumann I et al (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Druka A, Kudrna D, Rostoks N, Brueggeman R, von Wettstein D, Kleinhofs A (2003) Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faure S, Turner AS, Gruszka D et al (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci USA 109:8328–8333

    Article  PubMed  PubMed Central  Google Scholar 

  • Franckowiak J (1996) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  • Fu D, Szucs P, Yan L et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  PubMed  CAS  Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson Å (1938) Studies on the genetic basis of chlorophyll formation and the mechanism of induced mutating. Hereditas 24:33–93

    Google Scholar 

  • Gustafsson Å (1940) The mutation system of the chlorophyll apparatus. Lunds Univ Årsskr NF 36:1–40

    Google Scholar 

  • Gustafsson Å, Mac Key J (1948) The genetical effects of mustard gas substances and neutrons. Hereditas 34:371–386

    Article  CAS  Google Scholar 

  • Hagberg A, Hagberg G Induced traslocations in barley. In: Proceedings of the mutations in plant breeding II, 1968. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  • Halterman DA, Zhou FS, Wei FS, Wise RP, Schultze-Lefert P (2001) The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specific to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348

    Article  PubMed  CAS  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96:1744–1749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hansson M, Gough SP, Kannangara CG, von Wettstein D (1998) Chromosomal location of six barley genes encoding enzymes of chlorophyll and heme biosynthesis and the sequence of the ferrochelatase gene identify two regulatory genes. Plant Physiol Biochem 36:545–554

    Article  CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Article  Google Scholar 

  • Himi E, Taketa S (2015a) Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy. Genome 58:43–53

    Article  PubMed  CAS  Google Scholar 

  • Himi E, Taketa S (2015b) Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol Genet Genomics 290:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Hor KS (1924) Interrelations of genetic factors in barley. Genetics 9:151–180

    PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369

    Article  PubMed  CAS  Google Scholar 

  • Houston K, Druka A, Bonar N et al (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45

    Article  PubMed  CAS  Google Scholar 

  • Houston K, McKim SM, Comadran J et al (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA 110:16675–16680

    Article  PubMed  PubMed Central  Google Scholar 

  • International Barley Genome Sequencing Consortium, Mayer KF, Waugh R et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Islam AKMR, Shephard KW, Sparrow DHB (1981) Isolation and characterization of euplamisc wheat-barley chromosome addition lines. Heredity 46:161–174

    Article  Google Scholar 

  • Ito A, Yasuda A, Yamaoka K et al (2017) Brachytic 1 of barley (Hordeum vulgare L.) encodes the alpha subunit of heterotrimeric G protein. J Plant Physiol 213:209–215

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL et al (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250:383–394

    PubMed  CAS  Google Scholar 

  • Jost M, Taketa S, Mascher M et al (2016) A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiol 171:1113–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jöst M, Hensel G, Kappel C et al (2016) The INDETERMINATE DOMAIN protein BROAD LEAF1 limits barley leaf width by restricting lateral proliferation. Curr Biol 26:903–909

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koppolu R, Anwar N, Sakuma S et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Acad Sci USA 110:13198–13203

    Article  PubMed  PubMed Central  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Feulliet CJ, Muehlbauer G (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models, vol 7, pp 337–357

    Google Scholar 

  • Lee KP, Kim C, Lee DW, Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553:119–124

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li D, Liu S et al (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Löve Á, Löve D (1961) Chromosome numbers of central and northwest European plant species. Opera Bot 5:1–581

    Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M et al (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  PubMed  CAS  Google Scholar 

  • Mascher M, Jost M, Kuon JE et al (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS et al (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ et al (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyake K, Imai Y (1922) Genetic studies in barley I. Bot Mag Tokyo 36:25–38

    Article  Google Scholar 

  • Morell MK, Kosar-Hashemi B, Cmiel M et al (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:173–185

    Article  PubMed  CAS  Google Scholar 

  • Mrizova K, Holaskova E, Oz MT, Jiskrova E, Frebort I, Galuszka P (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 32:137–157

    Article  PubMed  CAS  Google Scholar 

  • Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant Cell Physiol 53:1232–1246

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249

    Article  CAS  Google Scholar 

  • Müller KJ, Romano N, Gerstner O et al (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  PubMed  Google Scholar 

  • Nakamura S, Pourkheirandish M, Morishige H et al (2016) Mitogen-Activated Protein Kinase Kinase 3 regulates seed dormancy in barley. Curr Biol 26:775–781

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle H (1922) Über freie Kombination und Koppelung verschiedener Chlorophyllerbeinheiten bei Gerste. Hereditas 3:191–199

    Article  Google Scholar 

  • Okagaki RJ, Haaning A, Bilgic H, Heinen S, Druka A, Bayer M, Waugh R, Muehlbauer GJ (2018) ELIGULUM-A regulates lateral branch and leaf development in barley. Plant Physiol. https://doi.org/10.1104/pp.17.01459

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson U, Sirijovski N, Hansson M (2004) Characterization of eight barley xantha-f mutants deficient in magnesium chelatase. Plant Physiol Biochem 42:557–564

    Article  PubMed  CAS  Google Scholar 

  • Pankin A, Campoli C, Dong X et al (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198:383–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Persson G, Hagberg A (1969) Induced variation in a quantitative character in Barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61:115–178

    Article  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B et al (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    Article  PubMed  CAS  Google Scholar 

  • Poursarebani N, Seidensticker T, Koppolu R et al (2015) The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics 201:155–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T et al (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Martin J, Steuernagel B, Ghosh S et al (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity (Edinb) 103:110–117

    Article  CAS  Google Scholar 

  • Sato K, Yamane M, Yamaji N et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider LM, Adamski NM, Christensen CE et al (2016) The Cer-cqu gene cluster determines three key players in a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot 67:2715–2730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin JS, Chao S, Corpuz L, Blake T (1990) A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. Genome 33:803–810

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  PubMed  CAS  Google Scholar 

  • Smith L (1951) Cytology and genetics of barley. Bot Rev 17:1–51

    Article  Google Scholar 

  • Stadler LJ (1928) The rate of induced mutation in relation to dormancy, temperature and dosage. Anatomical Record 41

    Google Scholar 

  • Stein N, Perovic D, Kumlehn J et al (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U et al (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Szarejko I, Szurman-Zubrzycka M, Nawrot M et al (2016) Creation of a TILLING population in barley after chemical mutagensesis with sodium azide and MNU. In: Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (eds) Biotechnologies for plant mutation breeding. Springer International Publication, Berlin, pp 91–111

    Google Scholar 

  • Szücs P, Blake VC, Bhat PR et al (2009) An integrated resource for barley lingage map and malting quality QTL alignment. Plant Genome 2:134–140

    Article  Google Scholar 

  • Taketa S, Amano S, Tsujino Y et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067

    Article  PubMed  PubMed Central  Google Scholar 

  • Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485

    Article  PubMed  CAS  Google Scholar 

  • Tavakol E, Okagaki R, Verderio G et al (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol 168:164–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M (2017) Six-rowed spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174:2397–2408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L et al (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM et al (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wendt T, Holme I, Dockter C et al (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11:e0168924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206

    Article  CAS  Google Scholar 

  • von Zitzewitz J, Szucs P, Dubcovsky J et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Jia Q, Zhou G et al (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang P, Lupken T, Habekuss A et al (2014) PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci U S A 111:2104–2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshikawa T, Tanaka SY, Masumoto Y et al (2016) Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breed Sci 66:416–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youssef HM, Eggert K, Koppolu R et al (2017) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 49:157–161

    Article  PubMed  CAS  Google Scholar 

  • Yuo T, Yamashita Y, Kanamori H et al (2012) A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot 63:5223–5232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zakhrabekova S, Dockter C, Ahmann K et al (2015) Genetic linkage facilitates cloning of Ert-m regulating plant architecture in barley and identified a strong candidate of Ant1 involved in anthocyanin biosynthesis. Plant Mol Biol 88:609–626

    Article  PubMed  CAS  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci USA 109:4326–4331

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansson, M., Komatsuda, T., Stein, N., Muehlbauer, G.J. (2018). Molecular Mapping and Cloning of Genes and QTLs. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_10

Download citation

Publish with us

Policies and ethics