Skip to main content

Corticotropin Releasing Factor Signaling in the Mammalian Cochlea: An Integrative Niche for Cochlear Homeostatic Balance Against Noise

  • Chapter
  • First Online:

Abstract

Beyond hair cells, the cochlea is composed of many cell types, and most of these cells do not directly participate in converting the acoustic signal into neural responses sent onward to the brain. Many of these “support” cells exist in niches that position them to monitor the state of the cochlea, and some are situated to signal such information to systems outside the cochlea. Others occupy positions such that they can invoke cellular responses limited to the cochlea without the need for “outside help”. Inflammatory responses that occur in the inner ear are perhaps one of the best examples of this surveillance/reporting role served by the vast majority of cells in the cochlea. Understanding a complex event such as inflammation will require that we draw on many different aspects of biology. Here we will cover a wide range of topics that are likely to be of significance for understanding cochlear inflammation. These include a cochlear-based CRF signaling system that mirrors the hypothalamic-pituitary-adrenal axis, central Master clocks and peripheral clocks resident in many tissues of the body, and the molecular biology of glucocorticoids and glucocorticoid receptors. While seemingly disparate, as discussion of these topics unfolds, it will become obvious that understanding these signaling systems will be important in generating a model of cochlear inflammatory processes. Here, we seek not to cover the well-worn ground of inflammation biology. Rather, we seek to cover the signaling systems that may be involved in setting up the inflammatory state, its modulation, and its final resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amir S, Lamont EW, Robinson B, Stewart J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci. 2004;24:781–90.

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010;120:76–85.

    Article  CAS  PubMed  Google Scholar 

  • Basappa J, Graham CE, Turcan S, Vetter DE. The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res. 2012;288:3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basinou V, Park J-S, Cederroth CR, Canlon B. Circadian regulation of auditory function. Hear Res. 2017;347:47–55.

    Article  PubMed  Google Scholar 

  • Bechtold DA, Gibbs JE, Loudon AS. Circadian dysfunction in disease. Trends Pharmacol Sci. 2010;31:191–8.

    Article  CAS  PubMed  Google Scholar 

  • Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A. Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev. 2009;62:57–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood. 2003;102:4143–5.

    Article  CAS  PubMed  Google Scholar 

  • Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One. 2011;6:e29801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boorse GC, Denver RJ. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol. 2006;146:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Borniger JC, Walker Ii WH, Gaudier-Diaz MM, Stegman CJ, Zhang N, Hollyfield JL, Nelson RJ, DeVries AC. Time-of-day dictates transcriptional inflammatory responses to cytotoxic chemotherapy. Sci Rep. 2017;7:41220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burow A, Day HE, Campeau S. A detailed characterization of loud noise stress: intensity analysis of hypothalamo-pituitary-adrenocortical axis and brain activation. Brain Res. 2005;1062:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Vethanayagam RR, Yang S, Bard J, Jamison J, Cartwright D, Dong Y, Hu BH. Molecular profile of cochlear immunity in the resident cells of the organ of Corti. J Neuroinflammation. 2014;11:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, Lee VM, Trojanowski JQ. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci. 2011;31:14436–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charmandari E, Chrousos GP, Lambrou GI, Pavlaki A, Koide H, Ng SS, Kino T. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS One. 2011;6:e25612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofford LJ, Sano H, Karalis K, Webster EL, Goldmuntz EA, Chrousos GP, Wilder RL. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J Clin Invest. 1992;90:2555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis LM, Rarey KE. Effect of stress on cochlear glucocorticoid protein. II. Restraint. Hear Res. 1995;92:120–5.

    Article  CAS  PubMed  Google Scholar 

  • Cutolo M, Straub RH. Circadian rhythms in arthritis: hormonal effects on the immune/inflammatory reaction. Autoimmun Rev. 2008;7:223–8.

    Article  CAS  PubMed  Google Scholar 

  • De Souza EB, Van Loon GR. Stress-induced inhibition of the plasma corticosterone response to a subsequent stress in rats: a nonadrenocorticotropin-mediated mechanism. Endocrinology. 1982;110:23–33.

    Article  PubMed  Google Scholar 

  • Dermitzaki E, Venihaki M, Tsatsanis C, Gravanis A, Avgoustinaki PD, Liapakis G, Margioris AN. The Multi-faceted Profile of Corticotropin-releasing Factor (CRF) Family of Neuropeptides and of their Receptors on the Paracrine/Local Regulation of the Inflammatory Response. Curr Mol Pharmacol. 2018;11(1):39–50

    Google Scholar 

  • Feng R, Li L, Yu H, Liu M, Zhao W. Melanopsin retinal ganglion cell loss and circadian dysfunction in Alzheimer’s disease (Review). Mol Med Rep. 2016;13:3397–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraz E, Borges MC, Terra-Filho J, Martinez JA, Vianna EO. Comparison of 4 AM and 4 PM bronchial responsiveness to hypertonic saline in asthma. Lung. 2006;184:341–6.

    Article  PubMed  Google Scholar 

  • Francis HW, Rivas A, Lehar M, Ryugo DK. Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Res. 2004;1016:182–94.

    Article  CAS  PubMed  Google Scholar 

  • Franklin DJ, Lonsbury-Martin BL, Stagner BB, Martin GK. Altered susceptibility of 2f1-f2 acoustic-distortion products to the effects of repeated noise exposure in rabbits. Hear Res. 1991;53:185–208.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H. Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res. 2006;83:575–83.

    Article  CAS  PubMed  Google Scholar 

  • Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol. 2014;5:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110:577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham CE, Vetter DE. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires corticotropin-releasing factor receptor 1 to establish normal hair cell innervation and cochlear sensitivity. J Neurosci. 2011;31:1267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham CE, Basappa J, Vetter DE. A corticotropin-releasing factor system expressed in the cochlea modulates hearing sensitivity and protects against noise-induced hearing loss. Neurobiol Dis. 2010;38:246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham CE, Basappa J, Turcan S, Vetter DE. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma. Mol Neurobiol. 2011;44:383–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamermesh DS, Stancanelli E. Long workweeks and strange hours. ILR Rev. 2015;68:1007–18.

    Article  Google Scholar 

  • Hannah K, Ingeborg D, Leen M, Annelies B, Birgit P, Freya S, Bart V. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults. Noise Health. 2014;16:108–15.

    Article  PubMed  Google Scholar 

  • Hanstein R, Lu A, Wurst W, Holsboer F, Deussing JM, Clement AB, Behl C. Transgenic overexpression of corticotropin releasing hormone provides partial protection against neurodegeneration in an in vivo model of acute excitotoxic stress. Neuroscience. 2008;156:712–21.

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol. 2005;489:180–94.

    Article  PubMed  Google Scholar 

  • Karalis K, Sano H, Redwine J, Listwak S, Wilder RL, Chrousos GP. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science (New York, NY). 1991;254:421–3.

    Article  CAS  Google Scholar 

  • Karalis K, Muglia LJ, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol. 1997;72:131–6.

    Article  CAS  PubMed  Google Scholar 

  • Kavelaars A, Ballieux RE, Heijnen CJ. The role of IL-1 in the corticotropin-releasing factor and arginine- vasopressin-induced secretion of immunoreactive beta-endorphin by human peripheral blood mononuclear cells. J Immunol. 1989;142:2338–42.

    PubMed  CAS  Google Scholar 

  • Kavelaars A, Berkenbosch F, Croiset G, Ballieux RE, Heijnen CJ. Induction of beta-endorphin secretion by lymphocytes after subcutaneous administration of corticotropin-releasing factor. Endocrinology. 1990;126:759–64.

    Article  CAS  PubMed  Google Scholar 

  • Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, Birnbaum MJ, Chao MV. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron. 2002;35:697–709.

    Article  CAS  PubMed  Google Scholar 

  • Kirk EC, Smith DW. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. J Assoc Res Otolaryngol. 2003;4:445–65.

    Article  Google Scholar 

  • Kudielka BM, Schommer NC, Hellhammer DH, Kirschbaum C. Acute HPA axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology. 2004;29:983–92.

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26:2115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330(Pt B):191–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunicka JE, Talle MA, Denhardt GH, Brown M, Prince LA, Goldstein G. Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol. 1993;149:39–49.

    Article  CAS  PubMed  Google Scholar 

  • La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol. 2008;14:731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman MC. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol. 1991;65:123–32.

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Gao WY. Chronic cochlear de-efferentation and susceptibility to permanent acoustic injury. Hear Res. 1995;90:158–68.

    Article  CAS  PubMed  Google Scholar 

  • Liberman LD, Liberman MC. Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol. 2015;16:205–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 2011;12:605–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci. 2013;33:5542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurek B, Haupt H, Joachim R, Klapp BF, Stover T, Szczepek AJ. Stress induces transient auditory hypersensitivity in rats. Hear Res. 2010;259:55–63.

    Article  PubMed  Google Scholar 

  • Meltser I, Canlon B. Protecting the auditory system with glucocorticoids. Hear Res. 2011;281:47–55.

    Article  CAS  PubMed  Google Scholar 

  • Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B. TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol. 2014;24:658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyakita T, Hellstrom PA, Frimanson E, Axelsson A. Effect of low level acoustic stimulation on temporary threshold shift in young humans. Hear Res. 1992;60:149–55.

    Article  CAS  PubMed  Google Scholar 

  • Nozu T, Okumura T. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol. 2015;50:819–30.

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Yano M, Doki Y, Azama T, Iwanaga H, Miki H, Nakayama M, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Ishida N, Monden M. Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res. 2008;145:5–12.

    Article  CAS  PubMed  Google Scholar 

  • Oster H, Damerow S, Hut RA, Eichele G. Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms. 2006a;21:350–61.

    Article  CAS  PubMed  Google Scholar 

  • Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006b;4:163–73.

    Article  CAS  PubMed  Google Scholar 

  • Oster H, Challet E, Ott V, Arvat E, Ronald de Kloet E, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 2017;38:3–45.

    Article  PubMed  Google Scholar 

  • Panda S. Circadian physiology of metabolism. Science (New York, NY). 2016;354:1008–15.

    Article  CAS  Google Scholar 

  • Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2001;8:492–503.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol. 1988a;60:549–68.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. J Neurophysiol. 1988b;60:569–79.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Johnstone BM. Binaural acoustic stimulation exercises protective effects at the cochlea that mimic the effects of electrical stimulation of an auditory efferent pathway. Brain Res. 1988;459:241–55.

    Article  CAS  PubMed  Google Scholar 

  • Rarey KE, Luttge WG. Presence of type I and type II/IB receptors for adrenocorticosteroid hormones in the inner ear. Hear Res. 1989;41:217–21.

    Article  CAS  PubMed  Google Scholar 

  • Rarey KE, Curtis LM, ten Cate WJ. Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res. 1993;64:205–10.

    Article  CAS  PubMed  Google Scholar 

  • Rarey KE, Gerhardt KJ, Curtis LM, ten Cate WJ. Effect of stress on cochlear glucocorticoid protein: acoustic stress. Hear Res. 1995;82:135–8.

    Article  CAS  PubMed  Google Scholar 

  • Reich K. The concept of psoriasis as a systemic inflammation: implications for disease management. J Eur Acad Dermatol Venereol. 2012;26(Suppl 2):3–11.

    Article  PubMed  Google Scholar 

  • Rivas Bejarano JJ, Valdecantos WC. Psoriasis as autoinflammatory disease. Dermatol Clin. 2013;31:445–60.

    Article  CAS  PubMed  Google Scholar 

  • Rivier CL, Grigoriadis DE, Rivier JE. Role of corticotropin-releasing factor receptors type 1 and 2 in modulating the rat adrenocorticotropin response to stressors. Endocrinology. 2003;144:2396–403.

    Article  CAS  PubMed  Google Scholar 

  • Roe SY, McGowan EM, Rothwell NJ. Evidence for the involvement of corticotrophin-releasing hormone in the pathogenesis of traumatic brain injury. Eur J Neurosci. 1998;10:553–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA, Schulte BA. Physiologic and histopathologic changes in quiet- and noise-aged gerbil cochleas. In: Dancer AL, Henderson D, Salvi RJ, Hammernik RP, editors. Noise-induced hearing loss. St. Louis: Mosby; 1992. p. 246–58.

    Google Scholar 

  • Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34:827–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF. A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci. 1995;15:3667–78.

    Article  CAS  PubMed  Google Scholar 

  • Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 2007;56:399–408.

    Article  PubMed  Google Scholar 

  • Subramaniam M, Henderson D, Campo P, Spongr V. The effect of ‘conditioning’ on hearing loss from a high frequency traumatic exposure. Hear Res. 1992;58:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Svec F. Glucocorticoid receptor regulation. Life Sci. 1985;36:2359–66.

    Article  CAS  PubMed  Google Scholar 

  • Svec F, Rudis M. Glucocorticoids regulate the glucocorticoid receptor in the AtT-20 cell. J Biol Chem. 1981;256:5984–7.

    PubMed  CAS  Google Scholar 

  • ten Cate WJ, Curtis LM, Rarey KE. Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues. Hear Res. 1992;60:199–204.

    Article  PubMed  Google Scholar 

  • ten Cate WJ, Curtis LM, Small GM, Rarey KE. Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea. Laryngoscope. 1993;103:865–71.

    PubMed  Google Scholar 

  • Taberner AM, Liberman MC. Response properties of single auditory nerve fibers in the mouse. J Neurophysiol. 2005;93:557–69.

    Article  PubMed  Google Scholar 

  • Tagen M, Stiles L, Kalogeromitros D, Gregoriou S, Kempuraj D, Makris M, Donelan J, Vasiadi M, Staurianeas NG, Theoharides TC. Skin corticotropin-releasing hormone receptor expression in psoriasis. J Invest Dermatol. 2007;127:1789–91.

    Article  CAS  PubMed  Google Scholar 

  • Tahera Y, Meltser I, Johansson P, Hansson AC, Canlon B. Glucocorticoid receptor and nuclear factor-kappa B interactions in restraint stress-mediated protection against acoustic trauma. Endocrinology. 2006a;147:4430–7.

    Article  CAS  PubMed  Google Scholar 

  • Tahera Y, Meltser I, Johansson P, Bian Z, Stierna P, Hansson A, Canlon B. NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. J Neurosci Res. 2006b;83:1066–76.

    Article  CAS  PubMed  Google Scholar 

  • Tahera Y, Meltser I, Johansson P, Salman H, Canlon B. Sound conditioning protects hearing by activating the hypothalamic-pituitary-adrenal axis. Neurobiol Dis. 2007;25:189–97.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yokota S, Hara R, Kobayashi T, Akiyama M, Moriya T, Shibata S. Physical and inflammatory stressors elevate circadian clock gene mPer1 mRNA levels in the paraventricular nucleus of the mouse. Endocrinology. 2001;142:4910–7.

    Article  CAS  PubMed  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM. Immune cell recruitment following acoustic trauma. Hear Res. 2006;222:115–24.

    Article  CAS  PubMed  Google Scholar 

  • Vetter DE, Li C, Zhao L, Contarino A, Liberman MC, Smith GW, Marchuk Y, Koob GF, Heinemann SF, Vale W, Lee K-F. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet. 2002;31:363–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liberman MC. Restraint stress and protection from acoustic injury in mice. Hear Res. 2002;165:96–102.

    Article  PubMed  Google Scholar 

  • Webster EL, Elenkov IJ, Chrousos GP. Corticotropin-releasing hormone acts on immune cells to elicit pro-inflammatory responses. Mol Psychiatry. 1997a;2:345–6.

    Article  CAS  PubMed  Google Scholar 

  • Webster EL, Elenkov IJ, Chrousos GP. The role of corticotropin-releasing hormone in neuroendocrine-immune interactions. Mol Psychiatry. 1997b;2:368–72.

    Article  CAS  PubMed  Google Scholar 

  • Webster EL, Torpy DJ, Elenkov IJ, Chrousos GP. Corticotropin-releasing hormone and inflammation. Ann N Y Acad Sci. 1998;840:21–32.

    Article  CAS  PubMed  Google Scholar 

  • Wlk M, Wang CC, Venihaki M, Liu J, Zhao D, Anton PM, Mykoniatis A, Pan A, Zacks J, Karalis K, Pothoulakis C. Corticotropin-releasing hormone antagonists possess anti-inflammatory effects in the mouse ileum. Gastroenterology. 2002;123:505–15.

    Article  CAS  PubMed  Google Scholar 

  • Yamasoba T, Dolan DF, Miller JM. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses. Hear Res. 1999;127:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear Res. 2016;333:283–94.

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Buhi WC, Alvarez IM, Curtis LM, Rarey KE. De novo synthesis of glucocorticoid hormone regulated inner ear proteins in rats. Hear Res. 1995;86:183–8.

    Article  CAS  PubMed  Google Scholar 

  • Zheng XY, Henderson D, McFadden SL, Hu BH. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Hear Res. 1997;104:191–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work from the Vetter lab described in this chapter was funded by the NIH (R01DC006258, R21DC015124), and grants from The Richard and Susan Smith Family Foundation, and the Russo Family Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Vetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vetter, D.E., Yee, K.T. (2018). Corticotropin Releasing Factor Signaling in the Mammalian Cochlea: An Integrative Niche for Cochlear Homeostatic Balance Against Noise. In: Ramkumar, V., Rybak, L. (eds) Inflammatory Mechanisms in Mediating Hearing Loss. Springer, Cham. https://doi.org/10.1007/978-3-319-92507-3_3

Download citation

Publish with us

Policies and ethics